“Love the giver more than the gift.” – Brigham Young

TABLE OF CONTENTS

TABLE OF CONTENTS .. 1
CHANGES TO THE RSICC CODE AND DATA COLLECTION .. 2
 DLC-274/GROUPSTRUCTURES... 2
REGISTRATION REQUIREMENTS ... 3
SINGLE-USER LICENSE AGREEMENT REVISED .. 3
SCIENCE EDUCATION PROGRAMS AT OAK RIDGE NATIONAL LABORATORY 3
CONFERENCES, TRAINING COURSES, SYMPOSIA... 4
 CONFERENCES .. 4
 IEEE Computing Conference ... 4
 TRAINING COURSES .. 5
 LANL MCNP6 Class Schedule for 2017 ... 5
 MCNP6 Training for 2017... 6
 MCNP6 Visual Editor Training for 2017 ... 7
 SCALE Training Courses – Winter 2017.. 8
SYMPOSIA ... 10
 2016 CALENDAR .. 10
 2017 CALENDAR .. 10
 2018 CALENDAR .. 10
CHANGES TO THE RSICC CODE AND DATA COLLECTION

There is one update to the RSICC catalog for those individuals that may be interested.

DLC-274/GROUPSTRUCTURES

GROUPSTRUCTURES was contributed by the ENEA-C.R.E Bologna, Italy via the OECD NEA Data Bank, Boulogne-Billancourt, France. Within the International Evaluation Cooperation, four energy group structures for multigroup cross section libraries were defined and adopted. The main purpose is to facilitate the inter-laboratory benchmarking of the evaluated files: ENDF/B-VI, JEF-2, JENDL-3. These group structures are:

1. VITAMIN-J, a 175 neutron and 42 photon group structure aimed at fission and fusion reactor shielding and for fusion blanket shielding (based on VITAMIN-J and -D group structures).
2. XMAS, a 172 neutron group structure, based on group structures formerly used with APOLLO and WIMS. This group structure is aimed at thermal and intermediate spectra cell calculations.
3. ECCO-33, a 33 neutron group structure forming a subset of the VITAMIN-J structure. It is aimed at benchmarking fast reactor criticality calculations.
4. ECCO-2000, a 1968 neutron fine group structure based on a lethargy grid of $1/120$. It contains all the energy boundaries of the group structures VITAMIN-J, XMAS, and ECCO-33.

A computer program is provided for producing a weighting spectrum for group averaging purposes. This spectrum is the one adopted for the VITAMIN-J group cross section libraries and consists of:

- Temperature dependent thermal Maxwellian
- $1/E$ slowing down spectrum
- Fission spectrum
- Fusion spectrum.

The computer produces a table which is linearly interpolable to a specified tolerance.

The program replaces the analytical form of the weighting spectrum by a table of energy versus weight in which the interpolation law is linear-linear. It uses a multipoint fractional error thinning algorithm to minimize the size of the table.

GROUPSTRUCTURES is distributed on one CD containing documentation, reference material, source files and data. (D00274MNYCP00 NEADB ID: NEA-1344)
REGISTRATION REQUIREMENTS

RSICC does not permit individuals to “pre-register” or “pre-order” software for use at a temporary or alternate location. The single user license and export control agreements are specific to the individual’s end use and the location at which the software will be used. During the registration process, individuals are required to provide the name of the institution at which they will use the software, an institutional mailing address and an institutional e-mail address. As an example, students that work at a location other than their university are required to update their registration with RSICC and submit a new request for any software that they intend to use after they have begun work at the new location.

SINGLE-USER LICENSE AGREEMENT REVISED

The single-user license agreement has been revised to address concerns regarding changes in end-use and employment changes of individuals that have received packages from RSICC. In some instances individuals obtain approvals from our Federal regulators for use of software packages for very specific purposes or while employed or associated with specific organizations. To address this concern, the single-user license agreement has been modified to indicate that the license is only valid for the end-use as stated in the Licensee's request and only while associated with the organization under which the request is being made. After February 1, 2015, the individual's single-user license would no longer be valid if they change their end-use or are no longer associated with the organization for which they obtained the original license. In these cases, the individual would need to submit a new request to RSICC for the package for the new end-use or the new affiliation.

SCIENCE EDUCATION PROGRAMS AT OAK RIDGE NATIONAL LABORATORY

Looking for an internship or post-graduate opportunity at Oak Ridge National Laboratory? The Science Education Programs at Oak Ridge National Laboratory provide paid opportunities for undergraduates, grad students, recent graduates, and faculty to participate in high-quality research alongside world-class scientists to solve real-world problems. Opportunities are available for internships and co-ops, research appointments, and sabbaticals.

You can access all available opportunities through the website at http://www.orau.org/ornl. The Talent and Opportunity System allows you to create a profile, and then answer only 5 or 6 questions for each program or job posting for which you apply.

All levels of participants from undergraduates to faculty are encouraged to publish research papers with their mentors. Please browse through the Research Profiles on the different participants and their research experiences at the right hand side of the bottom of the web site listed above. Also, there is a video of research participants at ORNL sharing their thoughts on how access to world-class research facilities and staff has catapulted their careers in science and technology. You can find it on YouTube at http://ow.ly/2EQLz.
RSICC attempts to keep its customers and contributors advised of conferences, courses, and symposia in the field of radiation protection, transport, and shielding through this section of the newsletter. Should you be involved in the planning/organization of such events, feel free to send your announcements and calls for papers via email walkersy@ornl.gov with “conferences” in the subject line by the 20th of each month. Please include the announcement in its native format as an attachment to the message. Please provide a website address for the event if one is available.

Every attempt is made to ensure that the links provided in the Conference and Calendar sections of this newsletter are correct; however, if the links become unavailable, please call the point of contact for the event.

IEEE Computing Conference

The Computing Conference (formerly called Science and Information (SAI) Conference) is a research conference that will be July 18-20, 2017, London, U.K. The goal of the conference is to be a premier venue for researchers and industry practitioners to share new ideas, research results and development experiences in the areas of Computer Science, Electronics and Communication. Accepted papers will be published in IEEE Xplore and indexed in various databases. Please see their website for more information at http://www.saiconference.com/Computing2017.
TRAINING COURSES

LANL MCNP6 Class Schedule for 2017

Website: https://laws.lanl.gov/vhosts/mcnp.lanl.gov/classes/classinformation.shtml

<table>
<thead>
<tr>
<th>Date</th>
<th>Location</th>
<th>Course Description</th>
<th>Instructor Availability</th>
<th>Fees</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 7-9, 2017</td>
<td>Los Alamos, NM</td>
<td>Using NJOY to Create MCNP® ACE Files & Visualize Nuclear Data</td>
<td>Non-US citizens must register by 2016-12-12</td>
<td>Tues 10:00 - Thur 5:00</td>
</tr>
<tr>
<td>Apr 3-7, 2017</td>
<td>Los Alamos, NM</td>
<td>Criticality Calculations with MCNP6</td>
<td>Non-US citizens must register by 2017-01-09</td>
<td>Mon 10:30 - Fri 12:00</td>
</tr>
<tr>
<td>Apr 10-14, 2017</td>
<td>Los Alamos, NM</td>
<td>Introduction to MCNP6</td>
<td>Non-US citizens must register by 2017-01-16</td>
<td>Mon 10:30 - Fri 12:00</td>
</tr>
<tr>
<td>May 16-19, 2017</td>
<td>Los Alamos, NM</td>
<td>Unstructured Mesh with Attila4MC</td>
<td>Non-US citizens must register by 2017-02-20</td>
<td>Tues 12:30 - Fri 4:30</td>
</tr>
<tr>
<td>June 5-9, 2017</td>
<td>Los Alamos, NM</td>
<td>Introduction to MCNP6</td>
<td>Non-US citizens must register by 2017-03-13</td>
<td>Mon 10:30 - Fri 12:00</td>
</tr>
<tr>
<td>July 31 - Aug 4, 2017</td>
<td>Los Alamos, NM</td>
<td>Introduction to MCNP6</td>
<td>Non-US citizens must register by 2017-05-08</td>
<td>Mon 10:30 - Fri 12:00</td>
</tr>
<tr>
<td>Aug 7-11, 2017</td>
<td>Los Alamos, NM</td>
<td>Variance Reduction with MCNP6</td>
<td>Non-US citizens must register by 2017-05-15</td>
<td>Mon 10:30 - Fri 12:00</td>
</tr>
<tr>
<td>Aug 14-18, 2017</td>
<td>Los Alamos, NM</td>
<td>Criticality Calculations with MCNP6</td>
<td>Non-US citizens must register by 2017-05-22</td>
<td>Mon 10:30 - Fri 12:00</td>
</tr>
</tbody>
</table>

MCNP® and Monte Carlo N-Particle® are registered trademarks owned by Los Alamos National Security, LLC, manager and operator of Los Alamos National Laboratory. Any third party use of such registered marks should be properly attributed to Los Alamos National Security, LLC, including the use of the ® designation as appropriate. Any questions regarding licensing, proper use, and/or proper attribution of Los Alamos National Security, LLC marks should be directed to trademarks@lanl.gov.
MCNP6 Training for 2017

For more information, see the website: http://mcnpvised.com/train_mcnp.html

<table>
<thead>
<tr>
<th>Date (Click Date for Info)</th>
<th>Class</th>
<th>Course Content</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 9-13, 2017</td>
<td>MCNP6 Intermediate Workshop</td>
<td>To see an outline for the course, Click Here.</td>
<td>Las Vegas, NV</td>
</tr>
<tr>
<td>March 6-10, 2017</td>
<td>MCNP6 Advanced Workshop</td>
<td>To see an outline for the course, Click Here.</td>
<td>Daejeon, South Korea</td>
</tr>
<tr>
<td>April 3-7, 2017</td>
<td>MCNP6 Intermediate Workshop</td>
<td>To see an outline for the course, Click Here.</td>
<td>Paris, France</td>
</tr>
<tr>
<td>October 9-13, 2017</td>
<td>MCNP6 Intermediate Workshop</td>
<td>To see an outline for the course, Click Here.</td>
<td>Paris, France</td>
</tr>
</tbody>
</table>
MCNP6 Visual Editor Training for 2017

For more information, see the website: http://mcnpvised.com/train.html

<table>
<thead>
<tr>
<th>Date</th>
<th>Course Description</th>
<th>Level</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 2-6, 2017</td>
<td>Beginning Visual MCNP6</td>
<td>1</td>
<td>Las Vegas, NV</td>
</tr>
<tr>
<td>January 30-February 3, 2017</td>
<td>Intermediate Visual MCNP6 for Shielding Calculations</td>
<td>2+</td>
<td>Richland, WA</td>
</tr>
<tr>
<td>February 6-10, 2017</td>
<td>Intermediate Visual MCNP6 for Criticality Calculations</td>
<td>2+</td>
<td>Richland, WA</td>
</tr>
<tr>
<td>February 13-17, 2017</td>
<td>Intermediate Visual MCNP6 for Medical Physics Calculations</td>
<td>2+</td>
<td>Richland, WA</td>
</tr>
<tr>
<td>March 27-31, 2017</td>
<td>Beginning Visual MCNP6. The NEA handles registration for this course.</td>
<td>1</td>
<td>Paris, France</td>
</tr>
<tr>
<td>May 15-19, 2017</td>
<td>Beginning Visual MCNP6</td>
<td>1</td>
<td>Las Vegas, NV</td>
</tr>
<tr>
<td>May 22-26, 2017</td>
<td>Advanced Visual MCNP6 with Applications in Mesh Tallies and Variance Reduction.</td>
<td>4</td>
<td>Las Vegas, NV</td>
</tr>
<tr>
<td>September 11-15, 2017</td>
<td>Beginning Visual MCNP6</td>
<td>1</td>
<td>Las Vegas, NV</td>
</tr>
<tr>
<td>September 18-22, 2017</td>
<td>Advanced Visual MCNP6 with Applications in Mesh Tallies and Variance Reduction.</td>
<td>4</td>
<td>Las Vegas, NV</td>
</tr>
<tr>
<td>October 2-6, 2017</td>
<td>Beginning Visual MCNP6. The NEA handles registration for this course.</td>
<td>1</td>
<td>Paris, France</td>
</tr>
</tbody>
</table>
SCALE Training Courses – Winter 2017

Training is provided by developers and expert users from the SCALE team. Courses provide a review of theory, description of capabilities and limitations of the software, and hands-on experience running problems of varying levels of complexity.

All attendees MUST be licensed SCALE 6.2.1 users. SCALE 6.2.1 is available from ORNL/RSICC in the USA, the OECD/NEA Data Bank in France, and the RIST/NUCIS in Japan. All currently scheduled SCALE Courses are described below.

<table>
<thead>
<tr>
<th>Date</th>
<th>Course Name and Description</th>
<th>Location</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>February 13-17, 2017</td>
<td>SCALE Lattice Physics and Depletion Course 2D lattice physics calculations using TRITON and Polaris to generate few group constants for nodal core simulators; cross section processing and resonance self-shielding techniques; generation and use of ORIGEN reactor libraries for spent fuel characterization. Additional topics include statistical uncertainty analysis with Sampler, 3D continuous-energy Monte Carlo depletion calculations, and Monte Carlo Dancoff factors for non-uniform lattices.</td>
<td>ORNL Oak Ridge, TN USA</td>
<td>$2000*</td>
</tr>
<tr>
<td>February 20-24, 2017</td>
<td>SCALE ORIGEN Standalone Fuel Depletion, Activation, and Source Term Analysis Course Isotopic depletion, activation analysis, and source term characterization using ORIGEN and the new ORIGAMI tool for convenient characterization of used nuclear fuel with radially and axially varying burnup.</td>
<td>ORNL Oak Ridge, TN USA</td>
<td>$2000*</td>
</tr>
<tr>
<td>February 27-March 3, 2017</td>
<td>SCALE Criticality Safety and Radiation Shielding Course Basic criticality calculations with KENO-VI; shielding analysis with automated variance reduction using MAVRIC; and criticality accident alarm system analysis. Calculations will be performed using multigroup and CE cross sections, including resonance self-shielding of multigroup data, optimized CE capabilities in KENO, and new coupled CE neutron and photon transport in Monaco.</td>
<td>ORNL Oak Ridge, TN USA</td>
<td>$2000*</td>
</tr>
<tr>
<td>March 6-10, 2017</td>
<td>SCALE Computational Methods for Burnup Credit This course describes the use of SCALE tools to meet the requirements of NRC Interim Staff Guidance 8 Rev. 3 for the use of actinide and fission product burnup credit. The course reviews the depletion capabilities of TRITON, details basic and advanced burnup credit criticality safety calculations with STARBUCS/KENO, and describes the validation requirements for k-eff and isotopic composition.</td>
<td>ORNL Oak Ridge, TN USA</td>
<td>$2000*</td>
</tr>
</tbody>
</table>
calculations, including uncertainty analysis. Applications of the ORIGAMI tool for convenient characterization of spent nuclear fuel with radially and axially varying burnup to burnup credit are also introduced. Previous experience with SCALE is recommended.

SCALE Sensitivity/Uncertainty Analysis and Uncertainty Quantification in Reactor Physics Calculations In this updated class, participants will learn to apply the sensitivity/uncertainty analysis (SA) and uncertainty quantification (UQ) capabilities in SCALE, focusing on two approaches: 1) perturbation theory-based TSUNAMI sequences to perform nuclear data SA and UQ for eigenvalue and reaction rates using 1D, 2D and 3D tools, including multigroup and new CE Monte Carlo capabilities; and 2) stochastic sampling-based UQ analysis using the new Sampler super-sequence to perform UQ for any computed parameter with respect to uncertainties in many input quantities including nuclear data, dimensions, densities, temperatures, etc. Training will include workshop problems analyzing a variety of different systems including LWR (both UO2 and MOX fuel), HTGR, and fast systems.

SCALE Criticality Safety Calculations Course This course provides instruction on the use of the KENO Monte Carlo codes for criticality safety calculations and is appropriate for beginning through advanced users. KENO V.a is a fast and easy-to-use code that allows users to build complex geometry models using basic geometrical bodies such as cuboids, spheres, cylinders, hemispheres, and hemicylinders. KENO-VI is a 3-D generalized geometry Monte Carlo code that allows for versatile modeling of complex geometries. Both versions of KENO provide convenient, efficient methods for modeling repeated and nested geometry configurations such as lattices. Both versions of KENO use the ENDF/B-VII cross-section data distributed with SCALE to perform either continuous energy (CE) or multigroup (MG) calculations.

*Full-time university students can register at a reduced rate. Both professional and student registration fees are discounted $200 for each course over one.

FOREIGN NATIONAL VISITORS TO ORNL - Payment MUST be received at least one week prior to attending the training course. All foreign national visitors must register 40 days before the start date of the training course they plan to attend.

For more information regarding these classes, visit their website at http://scale.ornl.gov/training_2017_feb-mar.shtml
SYMPOSIA

2016 CALENDAR

December
International Conference on Nuclear Security: Commitments and Actions, December 5-9, 2016, Vienna, Austria. See website for more information.

2017 CALENDAR

January
HPS 50th Midyear Meeting, January 22-25, 2017, Bethesda, Maryland. See website for more information http://hps.org/meetings/meeting45.html.

May

June

July

October

2018 CALENDAR

June

July
HPS 63rd Annual Meeting, July 15-19, 2018, Cleveland, Ohio.

November