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Version 9.00 Release Notes

This version of PENTRAN includes several improvements to the code architecture. The changes include the addition
of a restart capability, dynamically allocated arrays in F90, and fine-tuning of code parameters. Because the code runs in
ANSI FORTRAN-90, there are no patches or code settings to be made; the same source code compiles and runs on any
machine, and has been tested on IBM, SUN, and SGI parallel computers. Parallel operation on PCs under the Linux
Operating System was also successful using the efficient VAST Linux F90 compiler.

@ LEGAL NOTICE: PENTRAN is marketed and limited-licensed by H&S Advanced Computing Technologies, Inc.
(H&SACT), found on the web at http://www.hsact.com. Any use, application, or reference to any portion of the
PENTRAN code system, User's Guide, magnetic media, or any other materials linked to H&SACT constitutes a full,
implicit release of the code author(s) and collective research underwriters/sponsors from all liability. IN NO EVENT
SHALL H&SACT BE LIABLE FOR ANY INDIRECT, INCIDENTAL, PUNITIVE, SPECIAL OR CONSEQUENTIAL
DAMAGES, OR DAMAGES FOR LOSS OF PROFITS, REVENUE, OR USE INCURRED BY THE USER OR ANY
THIRD PARTY, WHETHER IN AN ACTION IN CONTRACT, OR TORT, OR OTHERWISE EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. H&SACT'S LIABILITY FOR DAMAGES ARISING OUT OF OR IN
CONNECTION WITH THIS SOFTWARE SHALL BE ZERO DOLLARS. THE PROVISIONS OF THIS
AGREEMENT ALLOCATE THE RISKS BETWEEN H&SACT AND THE USER. H&SACT'S PRICING REFLECTS
THIS ALLOCATION OF RISK AND BUT FOR THIS ALLOCATION AND LIMITATION OF LIABILITY,
COMPANY WOULD NOT HAVE RELEASED THIS AGREEMENT.

4 DISTRIBUTION: Any user of the PENTRAN code, User's Guide, magnetic media, or any other materials linked to
the PENTRAN Development Project implicitly agrees that the materials are not releaseable to other parties/individuals in
accordance with a limited contract license agreement. Violators of the limited license agreement are subject to civil and
criminal sanctions and will be prosecuted to include damages and legal expenses as awarded in accordance to the
Confidentiality Laws of the State of Pennsylvania. The user agrees to take all reasonable steps to ensure that Confidential
Information is not disclosed or distributed by its employees, representatives or agents in violation of the terms of this
Agreement.

@ LICENSING: Parties interested in obtaining a licensed version of PENTRAN should contact Dr. Alireza Haghighat at
H&S Advanced Computing Technologies, Inc, 430 Canterbury Dr, State College, Pennsylvania 16803,
http:.//www.hsact.com, telephone: (814) 231-8196, email: ali@hsact.com

4 About the Cover: A visualization of a virtual processor array with decomposition of the transport equation used in
PENTRAN in the angular, energy, and spatial (x y z Cartesian) domains.



Foreword

The overall vision of solving bigger radiation transport problems better and faster than ever before was the
fundamental reason for the development of the PENTRAN code. Continuing development and applicatiuon
of PENTRAN has been a remarkable experience, and has provided great insight about discrete ordinates
transport theory and parallel processing, although there is so much more to learn. Microsoft®Corporation’s
capable FORTRAN PowerStation/Developer Studio 4.0 for the PC was used to develop the PENTRAN code (now
Compaq Visual FORTRAN); these are superb programming and debugging vehicles, and allowed for easy
portability of the code to most any platform, with strict enforcement of ANSI-FORTRAN. This User’s
Guide is intended to describe the features, input parameters, and general operating characteristics of
PENTRAN. Undoubtedly, additions and amendments will be made to this document, as the code is under
continuous development and testing.
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1. Technical Notes
1.1 Goals and Objectives

The PENTRAN (Parallel Environment Neutral-particle TRANsport) code was initially developed with the following

research goals and code development objectives in mind:

Research Goals: (1) To demonstrate the parallel scalability of a 3-D transport code designed from scratch for
scalable parallel implementation with full variable decomposition on distributed memory and computing
architectures, (2) To implement and test parallel algorithm phase space decomposition strategies based on
problem physics and load balancing/ parallel efficiency issues, (3) To provide for and investigate the benefits
of adaptive discrete ordinates spatial differencing schemes as they relate to problem physics, decomposition,
and load balancing, (4) To test the benefits of differencing and acceleration methods in conjunction with
items (2) and (3) above, and (5) to provide higher order strategies for variable mesh coupling for increased
accuracy and scalability in large transport problems.

Specific Objectives used for Code Development: The code should iteratively solve 3-D Cartesian, multigroup problems
with anisotropic scattering via Legendre moments through P7, with level symmetric angular quadratures
through $20. Industry standard FIDO input with vacuum and specular reflective boundaries should be allowed
for. Sources should be definable as volumetric or plane surface incident fluxes, which may vary with space,
angle, and energy. Further, a parallel memory structure should be used, where memory intensive arrays should
be defined for local (as opposed to global) maximum dimensions to reduce storage extent and overhead. In
addition, the code should permit varying mesh cells with a coarse grid topology. Also, the code should
employ coarse mesh rebalance acceleration, as a minimum. Various differencing schemes should be readily
selectable (e.g. linear diamond, directional theta-weighted, etc) via adaptive algorithm logic, and based on
problem physics; “smart” ordering of scattering sweeps, such as Alternating Direction Sweeps, or ADS
(Haghighat, 1992), and other tools, many readily extracted from the literature, should be implemented where
practical, again according to problem physics. The code should be written in ANSI FORTRAN, and
parallelized for message passing using the standardized MPI Message-Passing Interface library for portability
to most any distributed memory parallel machine architecture (Gropp, et al, 1994).

Current Status: Coding of PENTRAN began in June 1995. A fully parallel two-grid (using “medium” and
“fine” mesh transport grids) version of the code is in place in ANSI FORTRAN-90 and is currently
34,000+ lines. Scalable parallel process testing with complete angular, energy, and spatial domain
decomposition, discontinuous meshing, multiple materials, first order zone coupling, fully definable sources,
vacuum and reflective boundary conditions, multigroup, anisotropic scattering (benchmarked through Ps),
multigrid coarse mesh zoned rebalancing, and selectable differencing for both forward and adjoint transport is
complete. Test problems have demonstrated exact agreement (within the convergence criteria) with
TWOTRAN-II, THREEDANT, DORT, and TORT production codes for all fixed source problems tested. Also,
the code has been experimentally benchmarked in 3-D using models of the Venus-3 Reactor owned by SCK
in Belgium and extensively tested (with excellent results) using the Kobayashi 3-D benchmark problems.
Criticality eigenvalue problem results compared between TWOTRAN-II and PENTRAN also yielded excellent
agreement, as did recent tests against MCNP in a variety of applications.
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1.2 Unique PENTRAN Code Features

® The PENTRAN code has been designed from scratch in ANSI FORTRAN and recently adapted to ANSI
FORTRAN-90 (to take advantage of dynamic array allocation) to be parallelized on a distributed memory,
multiple instruction, multiple data (MIMD) machine architecture using the Message Passing Interface (MPI)

message passing language. Any distributed memory MIMD parallel system running FORTRAN with MPI
could be used to execute PENTRAN without modification. PENTRAN is also fully Y2K compliant.

* All Input/Output (I/O) is performed by each processor in parallel (as required) to the fullest extent
possible. This includes input processing, initializations, and file output. Output files are written only for the
local energy groups and spatial cells processed on a given processor (with local angles written in the case of
angular fluxes), in accordance with local memory partitioning of the problem to n processors. A data
management utility (PENDATA) is available to gather data automatically following a parallel PENTRAN run,
and provides several options for the user in stripping results from parallel output files, including data
extractions from binary file storage.

* Parallel memory utilization was a paramount design goal. All dimensions for memory intensive arrays (e.g.
angular fluxes) are partitioned locally. That is, these arrays only need be as large as required for the largest
locally stored spatial grid, number of local energy groups, and local angular sweep octants based on the
problem being solved. This is possible due to the independent memory of each processor on a distributed
memory MIMD machine; in theory, if the problem becomes larger, one simply can add more processes (with
further decomposition) to obtain a solution.

* Full phase space decomposition is available (space, angle, and energy), with fully automatic scaling of the
problem to n processes (based on a user specified decomposition weighting vector). Also, a specific number of
processes can be locked for each decomposition variable if desired; or, decomposition scaling in any one
variable can be blocked (restricted to one processor). The automatic scaler/mapper will attempt to best adapt
decomposition to the user's weighting vector and the number of processes assigned at execution. Following
decomposition, PENTRAN includes automatic load balancing and red-black options to maximize efficiency.

* To further maximize parallel execution efficiency, communication among processors is, where practical,
carried out only between processors specifically involved in a given task, e.g. for those processors all
computing transport sweeps through particular coarse cells in the same energy group in a multigroup
transport problem. This is accomplished by MPI process “communicators” constructed during problem
initialization to exchange data between specific groups of processors. The number of communicators
constructed is minimized to the number uniquely required to reduce network buffering overhead. The
communicator structure is fully automatic and completely transparent to the user.

* Different differencing schemes can be assigned to different coarse meshes; therefore, differencing can be
adaptive based on each coarse mesh. Linear Diamond Differencing without fixup (DD) and with set-to-zero
tixup (DZ), Directional Theta-Weighted (DTW), Eponential-Directional Weighted (EDW), Exponential
Directional Hybrid (EDH), and Exponential Directional Averaged (EDA) differencing schemes are
independently selectable for each coarse mesh. The DD and EDA schemes are included only for test
purposes and not intended for routine use. It is strongly recommended that DD and EDA not be used.

* Anadaptive (DZ,DTW,EDW) scheme to automatically shift DZ to DTW (in the event a DZ negative
flux fixup is detected), and shift from DTW to EDW (it a DTW angular flux weight factor that is too high
is encountered) is available. Also, performance metrics are available for each differencing scheme, enabling the
user to assess differencing performance in each coarse mesh for either the medium and/or fine mesh grids.
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* Variable 3-D meshing (along each of x, y, and z) is available between different coarse meshes, with
“medium” and “fine” multigrid meshing within each coarse cell. (Coarse cells are set to contain
heterogeneous zones, where differencing is performed on medium and fine grids within each coarse mesh cell).

* As a consequence of variable 3-D meshing, Different spatial aspect ratios may be used along any set of
axes in 3-D (e.g. boxoids) within each coarse mesh, and mesh grid distances need not be the same along
adjoining surface boundaries between different coarse mesh cells. Mesh interpolations for angular fluxes
between adjacent coarse cell surfaces (where coarse mesh cells are not necessarily on the same processor) are
accomplished using Taylor Projection Mesh Coupling (TPMC). This is performed in all transport sweeps to
increase accuracy and minimize the information loss when moderate and dense mesh grids are interfaced on a
common boundary between two adjacent coarse cells. Note that particle conservation is strictly applied in
this process. A simplified multigrid method that can provide speedup and conserves memory uses a single set
of arrays for (local) angular fluxes on both the medium and fine mesh grids. The medium grid angular fluxes
are relaxed to convergence using a tolerance less than that for the fine grid, whereupon they are projected onto
the fine grid (overwriting the last medium grid values) using a new Taylor Projection Mesh Coupling
(TPMC) scheme. The preconditioned fine grid values are then iterated to final convergence. This is a
“simplified” multigrid method, since no residual corrections are projected with cycling between the medium
and fine grids. Transport solution projections are only performed from medium to fine grids, and accelerate
the solution by preconditioning the fine grid in a nested iteration. Varying speedups are possible with this
simplified multigrid scheme, depending on the problem, with the advantage of conserving memory by not
storing the medium grid explicitly.

* Standard coarse mesh rebalancing (CMR), implemented with restrictions and damping as Partial Current
Rebalancing (PCR), and/or system rebalancing (SR) is available for acceleration, and can be used
simultaneously with multigrid. There is no restriction on the differencing scheme that can be used with either
CMR (PCR) or multigrid. Each processor independently performs rebalance using a direct solution
(Cholesky factorization in the case of CMR (PCR)) over a zoned subset of coarse meshes (selected by the
user) to obtain group rebalancing factors following transport sweeps. Further, rebalancing factors are used to
scale only the scalar flux rather than the angular flux, as this prevents the need for message passing to complete
additional angular quadratures prior to the next source iteration (if angular decomposition is invoked).
Angular sweeps are ordered/decomposed in a sequence for Alternating Direction Sweeping (ADS). This can
drastically increase convergence in some problems when used with rebalance (Haghighat, 1992).

* The spatial coarse mesh structure in PENTRAN tundamentally defines rebalance subdomains, parallel
spatial decomposition subdomains, and adaptive Sn differencing subdomains. Although spatial
decomposition is not required, more than a single coarse mesh must be defined to permit spatial
decomposition on more than a single processor. Since a processor synchronization is performed following
completion of a coarse mesh, a sufficient number of fine meshes should be contained within each coarse mesh
to maintain computational load granularity and rebalance integrity. One restriction is that there be an equal
number of defined coarse cells, energy groups, and directions partitioned to each processor; this is needed for
parallel synchronization to prevent “deadlocks.” PENTRAN performs this automatically to the extent
permissible, again based on the decomposition weight vector specified by the user.

* Fixed sources can be defined as volumetric or as planar boundary fluxes; sources can have completely
arbitrary spatial, angular, and/or energy distributions. Spatial and angular source distributions can be defined
independently by energy group. Group dependent source scale factors can be specified. Criticality eigenvalue
solutions are fully implemented and have been benchmarked using test problems. Criticality problems and
problems that include upscatter can not be used with the group window option or the restart option; these
features are currently reserved for downscatter-only fixed source problems.
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* Industry standard, free field format FIDO input is used, with standardized order for cross sections. All
cross sections are assumed to be blended and assembled outside of PENTRAN. Provisions are made for row,
column, binary, and ORNL-GIP-binary formats, with and without Legendre coefficients multiplied in advance.
Wall-clock time, maximum iterations, and convergence tolerance are all independent means of execution
control, particularly useful for batch data processing.

* Planar images (z-levels) are available using the PENMSH utility. This utility generates a 3-D Cartesian
mesh and can be used in conjunction with PENINP to automatically generate a PENTRAN input deck.
Graphical schematics of 3-D problem geometry are automatically generated for use in the Mathematica™
computer algebra package, where PostScript images are rendered; however, the 3-D rendering of images requires
a significant effort in Mathematica. Use of PENMSH/PENINP reduces problem input preparation to a trivial
process, even for large, intricate geometries; this is marketed as a separate package by H&S Advanced

Computing Technologies.

® The code is written in ANSI FORTRAN-90; it has been implemented on a single-processor Pentium-PC,
an IBM RISC-6000 Workstation, SUN Workstation, and in parallel on the IBM Scalable PowerParallel System-2
(IBM-SP2) and SGI Origin-2000 supercomputers, and on a SPARKYcluster from H&S Advanced Computing
Technologies using Linux based PCs. Benchmark testing has demonstrated that PENTRAN is greater than
97% parallelizeable, resulting in excellent parallel speedups. Actual performance depends on the problem
being solved, differencing and acceleration methods used, problem load balancing, red-black coloring, and
applied decomposition strategy. Also, due to the inherent scalable paralle] memory structure used,
increasingly large 3-D problems that could not be solved on single processor platforms and/or within a
reasonable time period can be solved in parallel using PENTRAN by adding processors.
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2. Theory and Application

2.1 Multiprocessing Terminology

The idea of multiprocessing and the evolution of parallel computing began in the late 1950s and continues
today. Due to the ten-fold increase in computational performance during each five year period since then,
multiprocessing has made great progress. The reasons for attempting to solve any numerically intensive
problem with multiprocessing are simple: to reduce execution time, obtain higher accuracy, and/or solve
problems that are larger than can be solved using a traditional, single processor von Neumann architecture
(Freeman and Phillips, 1992). It is useful to define some common parallel processing terms; they are only
briefly mentioned here and will appear throughout this manual.

There are four classes of machines, as introduced by Flynn (1972):

SISD - Single Instruction/Single Data Stream (traditional von Neumann machine)
SIMD - Single Instruction/Multiple Data Stream (lock-step arrays, vector machines)
MISD - Multiple Instruction/Single Data Stream (all tasks contribute to one data set)
MIMD - Multiple Instruction/Multiple Data Stream (multiple independent tasking)

YV V VYV V

Shared memory MIMD systems are constructed so that each processor has global memory access and are
typically limited to tens of processors due to the large number of physical connections to the memory map.
Distributed memory MIMD parallel computers maintain completely independent memories, where processors
exchange information by message passing over a high speed network; each processor independently executes
code and can perform independent input/output (I/O) if allowed for in the parallel algorithm. Distributed
memory processors, viewed as “nodes,” are typically connected together using a variety of topologies, and can
range in number into the thousands.

Parallel performance models are necessary for analyzing and quantitying parallel speedup and efficiency.
Parallel speedup (S,) measures the overall reduction in computing time to solve a problem. It is defined as the
wall-clock time on a serial (single) processor divided by the wall-clock time on P processors:

21 S =TT,

Parallel efficiency (E,) measures the economic advantage of the parallelization by comparing the speedup factor

to the allocated number of processors (Freeman and Phillips, 1992):

22) E,=S,/P

It is assumed here that the parallel algorithm overbead, the extra executable code and storage required to
expedite parallel execution, is negligible during single processor execution. This is a typical convention often

adopted in measuring parallel speedup (Werner, 1981).
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Also, an upper bound on anticipated parallel speedup can be determined by applying the Amdahl’s Law, which
states that given the fraction of a code that is parallelizeable: 0<f,<I, the maximum observed speedup for P
processors with parallel communication time (T;.) is equal to:

1
@-f)+ . /IP+T./Tg

23) S =

where in the limit of an infinite number of processes (assuming zero communication time ):
1

(24) le S - =)
Therefore, from equation (2.4), if the parallelizeable portion of a code is f, = 0.80, the maximum theoretically
observed speedup is 5.0 regardless of the number of additional processors added to the problem. In reality,
due to increasing parallel instruction and communication overhead with the addition of more and more
processors, there will be a point (depending on f, , system architecture, and problem size) where adding more
processors leads to extremely low efficiencies. This may be irrelevant if the code is scalable in memory (as in
the case of PENTRAN), where, regardless of speed, the problem requires some number of processors to be
solved at all.

Other important terms include load balancing and granularity. Load balancing involves distributing work to
processors evenly to maximize parallel efficiency. Algorithm granularity is a qualitative term that refers to the
number of process operations that can be executed by each processor before a synchronization (or
communication) of the processors must be implemented. These synchronizations can be viewed as serial
barriers that limit parallel performance. Conventional definitions of grain size are:

> fine grain - unit numbers of operations before synchronization
» medium grain - tens of operations before synchronization
> coarse grain - hundreds (or more) of operations before synchronization

The computation/ communication ratio varies from machine to machine; this is the ratio of the CPU instruction
speed in flops (floating point operations per second speed, often stated in Mflops, or millions of flops) attainable on
the system to the relative speed of data transfer between processors. The speed of data transfer is related to
communication latency, or the time required to send a zero byte-length message, and the communication
bandwidth, in megabytes per second. The computation/ communication ratio is often more of an issue on
distributed memory, message passing machines, as network communication data rates are typically orders of

magnitude slower than typical Mflop rates (Gropp, et al, 1994).
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For illustration, the IBM SP2, as of 1996-1997, has these characteristics:

Processor performance of 266 Mflops/node (peak), minimum of 128 Mb/node
Message latency of 500 nsec, bandwidth 35 Mb/s (peak)
Computation/communication ratio of 7.6 Mflop/Mb-transfer (using peak values)

YV V VYV V

Based on these values, a coarse grained code architecture should provide optimum results on the SP2.

Parallel machine availability is a practical performance issue. If processors are available to users in a dedicated
mode, then during parallel execution, a single user has complete control of the processors, and parallel
performance can be accurately determined. Alternatively, in a non-dedicated (interactive) mode, processors are
simultaneously available to many users; absolute parallel performance may be difficult to verify in this case.

With regard to a working definition of parallel scalability, scalable algorithms maximize computation to
communication ratio, minimize serial operations, maximize algorithm and data parallelism, and maximize
efticiency for the architecture (shared versus distributed memory) (Gerner, 1995). While there is a great deal
more that can be mentioned about multiprocessing fundamentals and terminology, more complete discussions
can be found elsewhere (see Freeman and Phillips, 1992, and Gropp, et al, 1994, and Chandy and Misra,
1988).
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2.2 Deterministic Transport Methods

Deterministic discrete ordinates approximations of the transport equation invoke a discretization of the
energy, angle, and space variables. Discretization of the energy variable is accomplished by spectrally
averaging over energy groups (¢=1,G), from high energies to low energies, resulting in the multigroup
transport formulation. In steady state, the multigroup transport equation is (Lewis and Miller, 1993):

2.5) QMY (F,Q) +o, (P, (F,Q) =

iZI[TdQ'GSg. o (T, Q' EQ)(,U (r, Q)+ I[dQ Vo ¢ o (MW (T, Q)

o g'=1

Note that the angular variable is normalized on the unit sphere in the above formulation, so that integration

over Q is expressed in terms of the polar angle cosine {/ and azimuthal angle ¢ as:

(2.6) Z[dQ Id“ (92 _

Hereafter, this is implicitly assumed. The scattering term is then expanded using a truncated set of spherical

(surface) harmonics, with Q ~<8,¢ >, (Q'[Q) - (1), 4 = (cosh), u'= (cosh'):
27) Oy ()= Y @00 (R ()

28) GWwAﬂ=f%%wN@wﬁmm)

(29) M, = pu+A- p?) "2 (- p?)"? cos(¢ - ¢")

The Legendre polynomial B (U,), using the Legendre Addition Theorem, is:

(2.10) R(k,) =

m zwue¢muem

The spherical (surface) harmonics Yl,k and Yl*k are defined in terms of the Associated Legendre polynomials

and an exponential term:

@ )(l K)!

201) Y, (6.9) = e

R* (1) exp(ike)

(212) Y, (6,9) = (D)"Y, (6.9)
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Using equations (2.10), (2.11), and (2.12), P, ([,lo) can be written:

(213) R(u,)=P (WP W)+ 2;% R* (L)P* (') cos(k( — "))

By trigonometric identity:
(2.14)  cos(k(¢ —¢")) = cos(kg) cos(k¢") +sin(k¢)sin(k¢’)
The vectors Q —< 6,¢ > on the unit sphere can be expressed as a set of direction cosines projected parallel

to the x, y, and z axes, respectively, as < 4,],& > Note that /] and & can be expressed in terms of polar
angle cosine (I and the azimuthal angle ¢ :

(2.15) n=41- p? cos(p)

(2.16) & =1-pu*sin(¢)

A 3-D Cartesian geometry (using a right handed coordinate system) is shown in Figure below.

3-D Cartesian Geometry

If the streaming operator Q [ in equation (2.5) is expanded in 3-D Cartesian coordinates, it becomes:

A a a .0
217) QM = py—+n—+&—
(2.17) W ”ay Eaz
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Substituting equations (2.7), (2.13), (2.14), and (2.17) into equation (2.5), we obtain the Legendre expanded
multigroup form of the transport equation in 3-D Cartesian geometry (Lewis and Miller, 1993, and Bell and
Glasstone, 1985):

0 0 0 _
BI8) (B S E W, (XY, 21 9)+ 0 (%Y, W (1Y, 2 149) =

z @+10,,. g.(xyz){P(u)cogl(xyszZ 9

||(U)

[q)Cg (XY, 2) cos(k¢) +§03g (XY, 2)sin(ke)]} +_ZVUfg (X Y, 2)@y0(X, Y, 2)

o g=1

where U = x direction cosine for angular ordinate
N = y direction cosine for angular ordinate

¢ = z direction cosine for angular ordinate

Y, = group g angular particle flux (for groups g=1,G)

¢ = azimuthal angle constructed from arctan(é /), with proper phase shift
0,= total group macroscopic cross section

| = Legendre expansion index (| =0Q,L )» L=0 or odd truncation

Oy g1 = th Legendre moment of the macroscopic differential scattering

cross section from group ' — g (Equation (2.7))
P (1) = | th Legendre polynomial

@, = | th Legendre scalar flux moment for group g

P“(1)= I th, kth Associated Legendre polynomial

qogg.,l = I th, kthCosine Associated Legendre scalar flux moment for group g
o g =1 th, kthSine Associated Legendre scalar flux moment for group g
Xy = group fission distribution constant (neutrons)

K, = criticality eigenvalue (neutrons)

VO ¢ , = group fission production (neutrons)

The flux moments, @,., (pgg | and QDgg , are defined in terms of {' and @' as:

(2.19) §Dg|(xyz) I |(/J)I QU (xy,Zu',¢")
220) (0.2 = [ LR G costkd W, (x,v. 2,49

221) gy, (09,2 = [ LRG0 Einted W, (x,v, 2,49
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To solve for the adjoint function using the adjoint transport equation, the forward transport equation (2.18)

can be used if all angles f) are taken to be — f) , with angular and energy group indexes transposed (since the
transport operator is not self adjoint). Any forward transport algorithm can be used to solve adjoint transport
problems if the cross sections and sources are transposed and group re-ordered from group G to I, with
angles implicitly defined in opposite directions (Bell and Glasstone, 1985). Once solved for, the adjoint
function provides the neutron or photon importance throughout the problem phase space relative to a
particular response, defined by the adjoint source. The adjoint function can then be used in several ways.
One use of the adjoint function is to determine the regions/energies that most affect the response to help
determine limiting mesh intervals in the geometry. Further, a deterministic adjoint solution may be used to
assign importances for variance reduction in non-analog Monte-Carlo applications, which can add extreme
efficiency to such calculations (Wagner and Haghighat, 1996). PENTRAN can be used to solve for the
adjoint function; transposition of all cross sections, etc is performed internally by the code, and the user is
reponsible only for properly defining the transposed adjoint source, and noting that groups and directions are
reported implicitly reversed.
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2.3 Discrete Ordinates and Quadrature

In the discrete ordinates approximation, it is assumed that the transport equation only holds for a set of M

distinct angular directions Q —< 1,1, > on the unit sphere. In standard S, calculations, a numerical

quadrature is used to integrate the discrete ordinate angular fluxes to obtain flux moments. In practice,
quadrature sets must have the following properties:

M
(2.22) w, =10

mNI M M M
(2.23) Wmu:] = Wml’]rr:] =Y wén=0 fornodd, since J =Y W, Q. W,
(2.24) ZWm[,lm = ZWmI’]m =y wién for n even

Because net current ], in an isotropic flux is zero, this requires that equations (22) and (23) hold true.

et
Equations (2.23) are known as the odd moment conditions, and because they must be satisfied, the quadrature set
must be symmetric on the unit sphere for each set of directions, invariant with respect to 90-degree axis
rotations. Equations (2.24) are known as the even moment conditions, required to insure proper integration of the
Legendre functions. The Legendre polynomials must be represented due to the expansion in the scattering

term, so that:
1 du
225) 2= [ HRunp o)

and for Associated Legendre Polynomials:

9,9 (I +K)! _tdu

A+1 (=Kl P > 1 (LR (H')

(2.26)

For example, from the first even moment condition, with n=2, the quadrature set should satisty equations

(2.25) and (2.206) for the P, (first order only) Legendre Polynomials. Since, for any unit angular direction

vector Q, the ordinate must lie on the unit sphere:

(227) u+n’+&° =1 where i O[LM], jOLM],kO[LM]

and due to the required symmetries in three dimensions, the following recursion relationship holds for any
given octant:
N

(2.28) [Jiz =u? +C(i -1 where C:ﬁ(l—?)ulz) and 2<i SE

The N in 3-D S, corresponds to the number of levels from each direction cosine on the unit sphere, and there
are M=N(N+2) ordinates on the unit sphere, with M,,=N(N+2)/8 in each octant, with N/2 distinct direction
cosine values (Stamm’ler and Abbate, 1983). For example, to derive an S, level symmetric quadrature set
using the first octant, six equations with six unknowns must be solved for to provide unique, symmetric
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direction cosines and corresponding level weights. The following equations must be solved simultaneously

using equations (2.22), (2.24), and (2.28) (equations (2.23) are then satisfied implicitly):

(2.29) Symmetry conditions:
w,+w, +w, =1 (weights will be multiplied by I /8 for all octants, M ordinates)

, 2
W =pu2+C2-1)  (with C :E(l—Suf))

/,l32 =yl +C(3-1) (again with C = 6T22(1—3[112)>

(2.30) Even Moment Conditions:

2 2 2_ 1 4 4 s _ 1
W Hy +W2/12 +W3U3 _m W Hy +W2U2 +W3/13 _m

6 6 6 _ 1
W Hy +W2/12 +W3/13 _m

Since the weights w, in equations (2.29) and (2.30) are level weights (note there are

6/2=3 levels in an octant for S,), another set of equations is required to obtain
6 q q

point weights w,,; these can be derived from the ordinate pattern in the first octant ¢ T

(see the Figure at right depicting the point weight pattern within an octant): cT

(2.31) 2W, + W, =W,; 2w, =W,; 1w, =w, S22

Using Equations (2.29) to (2.31), the quadrature set for §; can be solved for.
Note that from the even moment conditions in equation (2.30), this S, f ’ o n

quadrature set will properly integrate Legendre moments through P, . All

quadratures from S, through S, were derived for use in PENTRAN using
equations (2.22), (2.24), and (2.28), along with equations similar to (2.31). No
level symmetric quadratures satisfying Equations (2.25) and (2.26) are available

Point Weight
Pattern for S,

beyond §,, due to the appearance of unphysical negative weights.
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2.4 Differencing Schemes

At this point, a spatial approximation to equation (2.18) is required. As
mentioned earlier, several approaches can be made to formulate a discrete
ordinates spatial differencing scheme. Zeroth spatial Legendre Functions
are:

232) RM=1  Ry=1 R(@=1

To derive the zeroth spatial moment balance equation, equation (2.18),
multiplied by equations (2.32), is integrated over a local cell volume and
divided by the integral of the product of equations (2.32), also integrated Cell Volume Element

over the cell volume. For our purposes, a cell volume has parallelepiped

dimensions (A%, Ay, AZ), Assuming that particles are traveling in a positive

direction, edge and center flux integrals are represented by integral averages. If we consider that directions
traveled could be negative, then #m~ ‘,um ,m = | 7m
which always occurs if the equations are derived in the direction of particle motion. The zeroth spatial moment balance

, and Em [ &ml for a positive sense in the equations,

equation (omitting the group g subscript for brevity) is:

/22 (l//outx _l//inx) +‘ Zm (l//outy_ l//iny) +%(V/outz_ l//inz) towya=(0a

(2.33)

For a positive angular vector, where {um1m &m}> 0, the entering and exiting surface averaged angular fluxes
normal to the x-axis are given by:

Ay Az
o3t Winx = ﬁ {5 T wm(0,y,2) Poly) Po(2) dy dz

A Az
va = agaz o Lo ¥n(8%Y,2) Poly) Po(2) dy dz

Surface terms normal to the y- and z- dimensions are defined in a similar manner. The cell volume-averaged
angular flux is given by:

(2.35)
vn= sz Vo To T wnl% .2 PolX) Poly) Pol@) cxcydz

The volume-averaged source term ) is defined in a similar manner. Note that we refer to the surface

averaged terms that enter and leave the cell as the “in” and “out” subscripts, respectively, while the “A”
subscripts denote cell average quantities.

18 Theory and Application



Equation (2.33) is exact, but contains seven unknowns. We can consider the three entrant values (“in”) are
known from boundary values, and that the collective cell averaged volumetric source 0, is assumed to be
known from a previous source iteration (in the standard S source iteration scheme). Therefore, only the cell
average angular flux (J/, and the exiting (“out”) surface values are unknowns, where these latter values are
obtained using a set of auxiliary equations. Auxiliary equations amount to “fitting functions” that resemble the

behavior of the angular flux across the spatial cell, and they establish the accuracy of the differencing method
(Lewis and Miller, 1993).

For weighted spatial differencing schemes, the following auxiliary equations are assumed to hold between cell
average and boundary angular fluxes:

You x = Ha(ya+ yvinx(a—1))
(2.36)

Youty = l/b(l//A + WinY(b - l))

Youtz= 1/C(WA + V/inz(C_ 1))

Note that the standard Diamond Differencing (DD) scheme results when a="2, b="2, and =2 in equations
(2.36); the DD scheme is second order accurate, but may lead to negative solutions. (Lewis and Miller,
1993). In such situations, a “negative flux set to zero fixup” of the Diamond scheme is commonly used. In
this paper, we denote the Diamond scheme with the zero fixup as Diamond-Zero (DZ). Furthermore, it is
worth noting that the negative flux fixup has also demonstrated to be the source of load imbalance in parallel
processing solutions (Haghighat, Hunter, and Mattis, 1995). To overcome the inherent difficulties of the
Diamond scheme, Rhoades and Engle (1977) developed the Theta-Weighted (TW) scheme that is always

positive.

Recently, Petrovic and Haghighat (1996) have shown that in multidimensional geometries, non-physical
oscillations occur because of the "mismatch" between the direction of particles (along a characteristic) and the
spatial axis where the differencing is carried out, even with very high mesh refinement. The oscillations are
attributed to a “forced” relationship of the average angular flux to the boundary fluxes (depending on the
auxiliary equation), where no directionally dependent boundary contribution relative to each axis is taken into
account (Petrovic and Haghighat, 1996). The non-physical oscillations inherent in solutions rendered by the
Diamond scheme only add to the previously mentioned difficulties with positivity.

To remedy this, Petrovic and Haghighat developed the Directional Theta-Weighted scheme (Petrovic and
Haghighat, 1996) that is an extension of TW. To derive a Cartesian form of the TW scheme for weight

factor a (for Y,y ), equations (2.36) are placed into equation (2.33). Solving for YA, and again using

equations (2.36), an expression for ¥outx is obtained. The Diamond relations are then assumed to hold for

the y- and z directions (with b="2 and =).
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To force positivity, arbitrary fixed theta-weighting parameters (9) are introduced into the formulation;
u (aAX) s dropped from the denominator, and 4 is assimilated into the parameters. Assuming the lower

bound of Woutx is zero, we obtain an equation for the “a” weight:

|'um|w|nx ijiny |€ |¢’|an
a= Ay

|’7m|+2|€m|+aEwm

(2.37)

Ay Az

Using a similar procedure along the y- and z-axes to yield weights for “b” and “,” respectively:

qA + |Zm|winy + 9 AX| wlnx |ZZ| lrUmz E
(2.38) b=1- Y AR
I'lm m
%AX-F ZAZ"‘UEme
|E |()U|nz Eﬂwinx |r’m|w|nyE
(2.39) c= 1—

|um|w|nx +2|r’r;| O-Ewinz

Petrovic and Haghighat specified that for maximum smoothing in directions perpendicular to respective
characteristics (to minimize oscillations), the fixed theta parameters in the TW scheme could be modified to
allow variable theta parameters that are dependent on the characteristic of the incident radiation. As a result,
the Directional Theta Weighted (DTW) scheme employs the 3-D theta parameters given in equation (2.40)
substituted for each @ parameter in equations (2.37), (2.38), and (2.39).

(2.40) Oum) =pn . Om=mn . OEm=&h

where [,1,& are the direction cosines along the x-, y-, and z- axes, respectively.
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The angular flux weighting factors are subsequently used to obtain the DT'W average cell angular flux, given
by:

ga+ gAX Winx t l;lAmy WViny t ‘gAmZ‘ Vinz
Ya=
‘ﬂm‘ ‘ﬂm‘ Llgml
(241) bAy CAz

Therefore, using equations (2.40) in equations (2.37), (2.38), and (2.39), respectively, the DTW scheme uses
direction-based parameters to obtain angular flux weighting factors, from which average and inherently
positive exiting angular fluxes are derived using equation (2.36). The DTW scheme is clearly non-linear in
the way the angular flux weights (4,b,c) are derived from directionally dependent parameters, incident fluxes,
and volumetric sources. To be consistent, these weights are restricted to the range between %2 and I, with
accuracy approaching second order truncation when all weights are 2 (equivalent to the Diamond scheme).
This truncation error is evident if equations (2.36) are substituted into (2.33). If that result is subtracted

from equation (2.33), and Taylor’s series expansions are applied about f/,, the trucation error of the DTW

formulation is:

Ax OV, . Ax2 0%y

eow=(1-%,)p + v
(242) 2a’ Px 0Ox 8apx Ox

Ay oy . Ay? 0%y AZOW | | AZ2 Oy
(L= 25) 7y oy "+ 8bp, Sye k- 20007 S ht b, o At

0(a3)

pu = gAu
where "% 1t | for UE{XY,Z} and Tm € {#tm, 7 m, Em}

A positive truncation error EDW indicates that DTW will underestimate the solution, while a negative truncation
error indicates DTW will overestimate the solution. When DTW weights are all 2, the truncation error is
identical to that of the Diamond scheme, influenced only by second partial derivatives. Note that when
DTW weights are greater than %, the truncation error is influenced by both first and second partial derivatives
of the angular flux (Sjoden, 1997). Because of the directional weighting of DTW, a set of angular fluxes
along different paths will contain both over- and underestimated angular fluxes. In addition to being positive
and free of oscillations from the directional weighting, the DTW scheme can be significantly more accurate
than the Diamond scheme, mainly because we typically are interested only in the scalar flux (integrated over all
directions). The combined effects of over- and underestimates of the angular flux among different directions
with DTW often cancel during integration (quadrature), resulting in more accurate scalar fluxes. In the special
case where the flux is relatively flat (such as in the middle of a reactor core), DTW weights will be near unity,
and the truncation error will be very small due to small flux gradients.
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While DTW may not be a highly accurate scheme in all situations, it behaves reliably in general situations
(positivity, stability, with derivatives having proper signs, etc). Therefore, a predictor- corrector exponential
scheme that uses DT'W to predict a solution that is then corrected by an exponential fit should be stable and
more accurate than DTW alone. Using this approach, the following inherently positive (provided the
coefticient a, is positive) exponential auxiliary equation is proposed:

(2.43) Wm(%,Y,2) =20 &P P13 | ) €025 PLOM 11m| ) €00k Po(@ Eml)

First order spatial Legendre functions, orthogonal to equations (2.32) over the widths of a single cell, are:
2
(244) P, (u) :A—u—l where OSUSAU 4hg UE{XY,Z
u

The exponential coefficients (A) define the overall profile of equation (2.43); these coefficients are normally
obtained by root solving I** moment transcendental conservation equations (Mathews, Sjoden, and Minor,
1994), (Walters, Wareing, and D. Marr, 1995), and (Wareing and Alcoufte, 1995). To avoid the
computational overhead of conserving the often ill-conditioned 1% moment balance equations, we can use a
DTW solution to provide good estimates of these coefficients in a predictor step in the following manner.
Consider a single cell of dimensions (AX, AY, A2), By taking first partial derivatives of equation (2.43) with
respect to x-, y-, and z- axes, and assuming that in the limit as cell dimensions approach zero,

w(XY,2) > wa, then A ,)\J— ,and A, can be separated as follows:

2/ 1 Oy, _ 24 1 oy 20k

= A= L T =
(245) 2L Va oy Ayl VA oz "= Az

Then, the first partial derivatives in equation (2.45) can be approximated, again using “out” and “in” cell
surface references, using a standard finite difference formulation, where UU{X, Y, 2} :

o _ (Woru™ Vinw) _ Au2 03y 3
T A 24 qus 1A+ OAW)

(2.46)

Then, using the predicted angular fluxes initially calculated using DTW (where DTW predicted angular fluxes
are denoted by l.,’U‘ ) we can obtain explicit estimates (after algebraic simplification) for A;, A i and A, . For

the x-, y-, and z- dimensions, respectively:

, (?/outx_%nx)‘:um‘ . (wouty_winy)‘ ﬂm‘
AR Aj =

A~ W ouz— Ving)l Eml
(247) 2y

2y 29

Note that use of equation (2.40) inherently assumes that the average of the first partial derivative of the
angular flux is assumed to be at the cell center. However, note further that this equation only needs to
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estimate the derivative of the angular flux as opposed to the angular flux itself. Furthermore, the

formulations cast in equation (2.47) demonstrate that A;, A i and A, are based on a dimensionless ratio of

the DTW predicted angular fluxes, thus reducing the sensitivity of computing a precise derivative. Since the
DTW scheme provides estimates for the exponential constants, we must solve for the coefficient 4, in
equation (2.43) using the zeroth moment balance defined in equation (2.33). To do this, we first perform
the integrations for the outbound surface and cell volume angular fluxes as in equations (2.34) and (2.35)
defined using the exponential auxiliary equation (2.43). (Note that inbound surface averaged fluxes and the cell
volumetric source terms are assumed to be known). Placing the resulting formulations into the balance
equation (2.33), we can obtain a solution (albeit rather cumbersome) for a,.

Substituting the resulting expression for a, back into the formulations for the outbound surface and volume

averaged angular fluxes, we can obtain WA (after more algebraic simplification):

=) MX“\%\) 1)

ﬁ[ﬂA"‘ ‘ﬂm‘ Winx + Zr; Winy + ‘ir;‘ l//inZ@

(2.48)

where 8 in equation (2.48) is defined by:

ad 2] U
ey PR e D feE 1
21 2/ [
ool ) et 22 -1 e 2 -1+
i ) 2/ U
%% o B (ﬁ)‘lE}Xp( PR
D Zﬂl _ 2/1[(
Fe( 24 -1 el ) -1 e 2 -1

The outbound cell fluxes can be defined in terms of the cell average angular flux:

2, O —2,,.0

l//outx:l//A‘ I‘ - eXp(‘ ‘I )D

(2.50) fm| O fml 0
24, O —2;; 0"

= 1 - exp 0

Voay 2vaT, TH P DY

2k —2zk -1

vouz=ya e (N
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Equations (2.48) through (2.50) therefore provide a correction to the initial DT'W predicted angular fluxes using
exponential functions based on the auxiliary equation (2.43). This methodology allows the exponential
coefficients (A) to be predicted at very low cost using the DTW scheme (Sjoden and Haghighat, 1997). This
is the Exponential Directional Weighted (EDW) method; it is absolutely positive, stable, directionally
weighted, and is significantly more accurate than the DT'W scheme in streaming problems with relaxed cell
intervals. Demonstrations as to the effectiveness of EDW in streaming problems can be found in the
literature.

To obtain an expression for truncation error of the EDW scheme, we again make the assumption that in the
limit of small cells, the DTW and EDW solutions are identical. Expanding the exponential arguments using
a Taylor’s Series truncated to third order, substituting into equation (2.33), and then subtracting that result
from equation (2.33) yields an expression for the truncation error of the EDW scheme (again after additional
algebraic simplification):

Ax Oy + Ax2 0%y

EEDW = 5, Ao lat o Aus lat
(251 2px OX 8px OX
wal _ W A ﬁJr Ay 6w| +Ay282w| N
Px O wat (—AXI2) Oy loxX|a+ (AX2/(6y A)) (Ow/0X|a)?2 2py 0y A" 8p, oy2 A
wal _ YA ﬁ"' A25W|+A2252V1|+
Py O wa+ (=Ayl2) Oy loy|a + (Ay2/(6y a)) (Ow10Y]|a)?2 2p, 6z " 8p, o0z2 "

Y A _ VA 3
Pz ﬁl wa+ (-Az/2) Owloz|a + (Az2/(6y a)) (Owl0z|a)? ﬁ-l- O(A%)

From equation (2.51), note that the truncation error (and therefore the accuracy) of the EDW scheme is
dependent on both the slope and concavity (for each partial derivative) of the angular flux, with a strong
influence from first partial derivatives. At this point, we have presented complete formulations for
development of the DTW and EDW schemes in Cartesian geometry. In sections that follow, we focus on
how each scheme is applied in PENTRAN in an adaptive differencing strategy.

The EDH differencing scheme is a completely adaptive combination of DTW and EDW. The application
of either scheme is determined based on the flux gradient selectively for each ordiante, making this the most
adaptive scheme selectable. The EDH scheme has been shown to be quite robust in difficult streaming
problems, although further testing is warranted before specific conclusions can be reached.

The EDA scheme is an early hybrid scheme used in developmental testing and analysis, and is not
recommended for use, and therefore should be avoided.
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2.5 Metrics and Adaptive Differencing

The DD, DZ, DTW, EDW, EDH, and EDA differencing schemes are fully implemented into PENTRAN.

The DD and EDA schemes are available not recommended and are only included for test purposes!

Differencing metrics reported for each coarse mesh are as follows (note: /sweep = “per angular flux sweep”):
» DD:  no metric is used (not recommended)

DZ:  the average number of fixups/sweep (adaptive level T)

DTW: the maximum average weighting factor /sweep (adaptive level 2)

EDW: the number of applications of DTW /sweep alone due to under/over-flow (adaptive level 3)

EDH: the number of applications of DTW /sweep, selectable & adaptive for each ordinate

YV V.V V V

EDA: the number of applications of DTW /sweep due to zero incident fluxes (not recommended)

The differencing metrics provide the user with useful information about the relative accuracy of the
differencing in each coarse mesh cell. PENTRAN allows the user to take advantage of an adaptive differencing
capability using DZ, DTW, or EDW to remove some of the difficulty in determining the appropriate scheme
within a particular coarse mesh. Clearly, zones containing strong sources will not likely require many (if any)
DZ tixups, although this depends on the cross sections, mesh size, and parallel decomposition strategy used.
While PENTRAN allows the user to restrict (“lock-in") any differencing scheme in a particular coarse mesh,
and the use of a specific algorithm is not a strict requirement, adaptive differencing can be selected for any coarse
mesh.

The adaptive differencing strategy in PENTRAN works in the following manner: assume (for illustration) that the
DZ scheme is initially assigned (but not locked) in each coarse mesh. In PENTRAN, an automatic transfer
from DZ to DTW takes place if a negative flux fixup is encountered, followed later by another transfer to
EDW if a maximum weight factor beyond a user specified maximum weight (typically set to 0.96) is detected
for DTW within a coarse mesh. A shift from DTW to EDW can occur in a strong source region if the flux
is relatively flat (low gradient), where a step scheme would be ideal (causing higher weights in DTW). Since
EDW would not be practical in these situations, forcing DTW in regions with low flux gradients may be
warranted.

If parallel decomposition is used with adaptive differencing, a synchronization is made among the processors
working on a particular coarse mesh to upgrade to the same adaptive differencing scheme, even if an upgrade is
not required by all processors. This lends the adaptive procedure to a degree of numerical consistency, so that
the user is certain of the differencing algorithm rendering a solution in a particular coarse mesh.

Note that in the case of a fuel pin bundle immersed in water, the flux gradients could be steep, and allowing
omega-selected EDH differencing may be best. This is because the differencing (DTW or EDW) is
adaptively selected for each discrete ordinate, and with no restrictions or processor synchronizations of the
differencing algorithm. We note that the EDH algorithm is still being tested, although to date, results have

been promising given that this scheme implements a truly adaptive approach for each direction.
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2.6 Angular Flux Moments and Boundary Conditions

Regardless of the differencing method used, following an update of the group source and angular flux transport
sweep through each cell, cell group scalar, cosine, and sine flux moments are updated using the latest cell
average iterates. Therefore, equations (2.52), are based on the cell averaged angular flux in equation (2.33),
and are updated using the following quadrature expressions (with an implicit group g subscript):

M
¢I :% Z Wml//AmPI(/lm)
m=1

(2.52)
1 M
¢|é| = 8 n{:l Wm¥ A mplk(ﬂ m) COS(Kg m)
1 N .
¢|§I = 8 )y WmV/Amplk(um) sin(kgm)
me1

Note that these expressions include the I/8 term from the criteria that quadrature weights were derived
summing to one in each octant. Azimuthal angles are determined from:

(2.53) Pmo = adn Gm)

where care must be taken to obtain the correct phase of the angle on the unit sphere. If <m<0,7m <0, then
Pm=(pmo=7) [f Em>0, im <0, then Pm = (pmo +7), otherwise, #m = @m0 |

Standard boundary conditions include specular reflective, albedo, and vacuum (zero return current) boundaries.
For albedo boundaries, entering angular fluxes are reflected from surfaces with normal vectors parallel to the x

axis, are, with Qm= </im,77m, fm> :

(2‘54> l//Xde@m) =a l//dey(ﬁm) Where Qm ° = _Qm - I and ﬁm = <_u my 77m1 ém>

Similar formulations hold for angular fluxes reflected from a surface normal to the y-axis with

ﬁm = <l‘ my ~'m, fm> and normal to the z-axis with Q= (tm, m,=Em). In each case, the albedo factor a
can be energy group dependent, and is equal to unity if the boundary is fully reflective, or equal to zero if the
boundary is a vacuum.
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2.7 Acceleration Schemes: Rebalancing

PENTRAN contains options for standard rebalance methods, as well as for a simplified multigrid acceleration
scheme. Each iterative acceleration schemes is compatible with any of the available differencing schemes with
no special treatment, and they can be used simultaneously to accelerate the iteration process. Coarse mesh
rebalancing involves requiring the integral balance equation to hold for each energy group for each coarse mesh
(Reed, 1971). The integral balance equation for each group, after applying Gauss’ theorem to the streaming

divergence, 1s

[3-da+[(e-gopodv= j(QS(D,U) + Qkﬁss
Vi (o]

(2.55) A v
where J - leakage current across surfaces 4 bounding volume V'
O—0s _— _-1: .
= within group removal cross section
fo scalar flux

Qspw) = down- and up-scattering source

Qfiss
Ko

volumetric fission source term

Qex

= volumetric external source term

' f.: Vi - .

Introducing rebalance factors K for each coarse mesh of volume 4K in an x-y-z gridspace for each energy
group, and using partial currents normal to each respective surface, equation (2.56) is a general expression for
rebalance for each coarse mesh. Note that surfaces are labeled with respect to each local coarse mesh cell:

2.56) ik ((XijlAx 1n) + XiidAx o) + (YijlAy rgn) + (YijlAy Letr) +
(ZijlAz Bottom) + (IZijk/Az Top) + (0 = T)PoijkVijk) = fi-1,jk (I jklAx out) = Fiea k(X jicAxin)

—Fi, -1k (AYT A Lett) = i, je k(Y e klAy Rigt) = Tijk-1(IZ5 k-1 |AzT0p) = Fij ke1(IZij i1 |Az Bottom)
= (Qsp ) ik + Qk]lss ik T+ Qext ijk) Viik

Simultaneous solution of the system of equations that result from Equation (2.56) for each coarse mesh in each
energy group is required; this is performed in PENTRAN using a direct Cholesky-LU factorization algorithm.
All rebalance factors are damped using restrictions equivalent to Partial Current Rebalance (Rhoades, 1981).
Maximum rebalance factors are set by the worst imbalance, with a damping factor applied in further rebalance
operations. To retain scalability and bound the memory required for this direct solution method, zoned
rebalancing over subsets of coarse meshes is required if the number of coarse meshes exceeds the maximum
rebalance matrix size, or if the user specifies a subset of contiguous zones over which to constrain particle
balance following each source iteration. If all of the coarse cells in a zone are not local to the processor,
rebalance for that zone is by-passed. This direct, zoned solution scheme for rebalance is necessary (as opposed
to an iterative technique) to achieve adequate processor synchronization and minimize rebalance overhead.
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2.8 Acceleration Schemes: Multigrid

Multigrid spatial acceleration methods essentially use coarse grid iterates projected to correct fine grid iterates,
and are best described by transforming the spatial domain into the frequency domain (with units of inverse
length) using the Fourier transform. High frequency errors present in successive fine grid iterates are readily
reduced by each fine grid transport source iteration. However, the low frequency persistent errors present in
the fine grid iterates become increasingly difficult to reduce with mesh grid refinement. In comparing a fine
grid to a coarse grid formulation of a finite difference problem, the number of possible Fourier frequencies
correspond to the number of equations in the linear system. Since this depends on the stepsize used in the
problem, a larger mesh step size will limit the number of possible Fourier modes (frequencies). The highest
frequency error components at a point on a coarse mesh will typically correspond to low or mid-range
frequency error components for that same point on a fine mesh. Therefore, if a value from one iteration on the
coarse grid were projected to correct the fine grid solution, the correction should be greater (and most often is
significantly greater) than a single fine grid iteration by itself. This is because the low frequency errors in a fine
grid problem are most effectively reduced by using a correction from a coarse grid solution. Therefore,
multigrid methods effectively increase the rate of convergence in the iterative scheme. Because the asymptotic
rate of convergence is the negative logarithm of the spectral radius of the linear system, use of a multigrid
procedure effectively reduces the spectral radius in comparison to the spectral radius of the single fine grid

system. This is the basis of the multigrid (also called multi-level) approach.

For transport applications, Nowak, Larsen, and Martin (1987) demonstrated via Fourier analysis that if a mesh
size is doubled (for computing on coarser mesh with a high scattering ratio), the number of iterations required
to reduce the high frequency error by a factor of 10 is doubled (demonstrated using a weighted diamond scheme). At
the same time, in three dimensions, the number of cells is reduced by 1 /8 (a factor of two along each axis). Therefore,
the overall work required on the coarser mesh is 25% of that on the fine mesh. Nowak, et. al. also observed that if the
scattering ratio is small, multigrid methods will not be as beneficial, since the transport operator effectively
reduces the iterative error. This is expected, since the spectral radius of the difference equation is directly
proportional to the scattering ratio. From this, it is readily inferred that problems that are less elliptic (with
lower scattering ratios) are dominated by errors that require a high frequency local iterative correction, and are
therefore solved readily by the transport operator on the fine grid. Alternatively, problems with high scattering
ratios are elliptic in nature and are dominated by a global low frequency error; these problems benefit the most
from a low frequency iterative error correction provided by a multigrid solution.

Opverall, the key to obtaining accelerated convergence in a multigrid scheme is to use a powerful (yet
computationally inexpensive) equation for a coarse grid iteration step. Yet due to the immense memory
requirements demanded by multigroup parallel transport methods, there is a need to conserve the memory
demanded per processor. To capture some of the beneficial acceleration effects of a multigrid scheme and still
conserve memory, the PENTRAN code iterates to a prescribed tolerance on the medium grid, and then
overwrites medium grid angular flux values as they are projected onto the fine grid. In this way, the same arrays
are used to store both grids. Recall that angular fluxes are partitioned in memory local to each processor in
PENTRAN, so that only the portion of the phase space assigned to each processor is stored. In spite of this, use
of two transport grids would add to memory overhead, and increase the minimum processor pool required to
solve a large problem.
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Therefore, the medium grid angular fluxes are lost after they are converged to a suitable tolerance and projected
onto the fine grid using 3-D Taylor Projection Mesh Coupling (TPMC; this is presented in the next section).
Using this procedure, the low frequency error on the fine grid can be largely eliminated, causing the solution to
be dramatically accelerated. This scheme of projecting converged coarse grid values to the fine grid with
TPMC is defined here as a “Simplified” Multigrid approach, and differs from more conventional multigrid
methods that use residual error corrections between grids. Using this multigrid scheme in PENTRAN, test
problems with high scattering ratios have demonstrated convergence with as much as an order of magnitude
fewer iterations compared to the same problem solved using a single grid iteration sequence (Sjoden and

Haghighat, 1996).
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2.9 Taylor Projection Mesh Coupling

In 3-D discrete ordinates (Sy) . \Malerial B is Fine m

X

transport methods, it is desirable (and Materid A'is Coarse Bj T
at times necessary) to use g . Wine
discontinuous spatial grids in coarse \Az/ Win PTea A
cells or at material interfaces. On a ' Al Al W T bay | v
single processor machine, variable T A
meshing permits high definition in . P R
regions of interest, with coarse grids o : - {;A lp
used in less important regions. In L / B
parallel processing, variable meshing Z\Z’/\ y-z planeinterface

i

can be used to reduce load imbalances

in problems spatially decomposed

over large processor arrays‘

Trasnfer from “A” Coarse to “B” Fine Meshes, where =1 and J=4

In a typical S, iterative solution scheme, a source iteration is performed, followed by sweeps in angular flux for
each discrete ordinate using a spatial differencing scheme. As the sweeps progress through the various spatial
grids in a problem, particle conservation must be maintained at any discontinuous grid interfaces. Typically,
this is accomplished using a simple balance of particles streaming across a boundary surface, resulting in a
zeroth order approximation. This procedure works well in the case of sweeps progressing from fine grids to
coarse grids; however, a loss of information occurs as angular sweeps progress from coarse grids to fine grids.

PENTRAN uses a new Taylor Projection Mesh Coupling (TPMC) scheme for an x-y-z S, method that attempts to
mitigate the loss of angular flux information as sweeps are made from coarse to fine grid interfaces. Note that
the relationship between surface and cell averaged angular fluxes is determined using a spatial differencing
scheme, as already discussed. In the figure above, consider a transfer of angular fluxes from the "A" boundary
to the "B" boundary, crossing the (y-z) plane in the +x sweep direction. The mismatch between the cells
results in a discontinuity that must be resolved while sweeping along angles.

To reduce the loss of information that occurs when a transfer of boundary fluxes is made from a coarser -to-
finer grid pitch, a Taylor Projected Mesh Coupling of surface angular fluxes is proposed. This TPMC scheme
amounts to using the coarser A surface angular fluxes to approximate partial derivatives in a truncated Taylor
series expansion; the expansion is used to project surface angular fluxes exiting A into B. Taylor interpolation
methods have been employed in computational fluids and heat applications, but often with difficulty in
maintaining strict conservation (Kallinderis, 1992, and Phillips and Schmidt, 1984).

The first step in the TPMC scheme involves the direct transfer of the angular fluxes exiting cell A at point o,

l//OutA; to the angular flux entering a B cell at point p, which is YinB | Using a truncated Taylor expansion from

surface centers connected between A and B:

0 0
O W =W 00, T ez, T, +OW)
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With partial derivatives approximated by central differences computed from A boundary values:

oy _ (WL—yr) d (wr—ws)
=2 =R T (A2 oy _\Yr-ys 2
(2.58) vy 4 Ay4 (49 and 0z 4 Az, +0(A%)

Note that the scale factors b and ¢ are the relative fractions of cell A width connecting surface centers along the
y and z axes, respectively. Combining equations (71) and (72) results in

(259) WinB = Wou t b(l//L - l//R) + C(l//T - l//B)

Equation (2.59) permits a simple first order projection of angular boundary fluxes exiting from the coarser A
cell entering into the finer B cells. During a transport sweep for a given angular ordinate, this process is
repeated for all B cell boundaries. If a flux projection yields negative values, the absolute value of the most negative
angular flux projected among the B surfaces is then added into each B surface flux, causing the minimum
projected flux to be zero. Because particle conservation during the transfers from I cells of A to ] cells of B
must be conserved, normalized projection fractions S, for each B surface angular flux are then computed by

normalizing all values projected (in Figure 4, I=1 and [=4):

U U
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0
(2.60) N

Particle balance is achieved by first computing the particle outflow from the surface of A:

|
(2.61) flow o = X(woun ) iem (Aya AZa)

Then, using equations (2.60) and (2.61), the final TPMC projected angular fluxes are obtained from

fi - flow A

'//InBj = AVe AZm
(2.62) fim 2Ye; A28,

Note that a traditional, zeroth order projection is obtained by setting the scaling factors b and ¢ to zero. In the
event that grids do not directly "match," nearest neighboring cell centers are used to project angular fluxes.
Based on test problems, the TPMC scheme provides fine grid fluxes that are 3 times or more accurate than
traditional zeroth-order methods in cases where a finer meshed region of interest (ROI) is surrounded by
coarser meshes. Therefore, TPMC as a minimum mitigates some effects of using coarser grids in cells
surrounding a ROI. In more realistic problems with steep gradients, the differences between TPMC and zeroth-
order schemes are more pronounced. Accuracy of fine mesh fluxes have shown a factor of three improvement

in the Kobayashi problems using TPMC as opposed to zeroth order coupling in problems using discontinuous
grids (Sjoden and Haghighat, 2000).
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2.10 Ciriticality Eigenvalue Determination

An algorithm to determine the criticality eigenvalue of a system, consistent with complete parallel phase space
decomposition, is in place in PENTRAN. Several benchmarks have been performed for various small
multigroup problems to verify the iteration procedure. The existence of the criticality eigenvector is
mathematically derived from Perron’s theorem, which states that a positive matrix has a unique positive
eigenvector with a single positive eigenvalue that is greater than the modulus of any other eigenvalue for the
matrix. In reactor physics applications, the criticality eigenvalue represents the fundamental effective
multiplication factor &, that dominates the the nuclear system after all higher harmonic transients have died
away.

In the code, the outer iteration fission source is based on the previously converged inner iteration flux estimate.
The fundamental (criticality) eigenvalue &, is determined from a variation of the Damped Power-Aitken

Wielandt eigenvalue iteration, where a correction to the eigenvalue 5k0 is made based on an Aitken extrapolation

(used successively after each 3rd iteration) and the relative difference between successive eigenvalue iterates
(Nakamura, 1977). Note that due to their added parallel storage and synchronization requirements,
Chebyshev acceleration methods were not considered. In any one outer iteration in PENTRAN, the criticality
eigenvalue estimate for iteration ¢ is updated using the following procedure on each processor, with the most

.. . t . . .
recent fission source estimate Qfiss (based on the most recent scalar flux) used as the arbitrary power iteration
weighting vector:

(2.63) K=kt <inss ’inss>

0 0
t-1 ~t
< fiss ’inss>
The Aitken extrapolation is then performed after at least 3 successive iterates are available, where

2.64 K'=k -
(2.64) o TR TR
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(2.65) where kit = C(EOt -k

The C in equation (2.65) is a factor restricted to [0.5,1], and is based on the relative error between successive
eigenvalue iterates, increasing to unity as the relative error between iterates decreases below specific settings.
This scheme is effectively a Damped Power-Aitken -Wielandt scheme, allowing convergence to the correct
criticality eigenvalue (based on numerical testing), even if the initial guess is poor.
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2.11 Automated Phase Space Decomposition Scheduling

The key to the parallel scalability of the PENTRAN code lies in its internal structure. A transport problem
input deck is read and processed by each processor. Following several initialization sequences, the angles,
energy groups, and spatial cells in the problem are automatically decomposed according to a user-specified
decomposition weighting vector. This decomposition vector contains arbitrary weighting factors for angular, group,
and spatial decomposition. This vector allows a user to "prioritize" the decomposition strategy used in a
parallel execution of the problem without specifically assigning an exact number of processors (a user can also
block decomposition in a particular variable, or lock-in any specific number of processors, if desired).

Therefore, the PENTRAN code auto-schedules the decomposition of the problem for the user at execution time
onto n processors, and self adjusts the number of processes assigned for the problem being solved. However, this
is performed within the restrictions allowed by the user's decomposition weights. If the weighting scheme
specified by the user leads to an odd number of processes scheduled on an even number of processors, a halt statement for
"processor utilization below 100%" is issued, with a message to the user to change the decomposition weights
or the allocated number of processors. The number of processes must be greater than or equal to and divisible by
the number of processors. Ultimately, the auto scheduling in PENTRAN leads to a 3-D Cartesian, virtual
processor array topology, with angular, group, and spatial decomposition axes. The phase space of the problem
is essentially projected onto this virtual processor topology during parallel execution.

3-D Cartesian Virtual Processor Array
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2.12 Advanced Processor Communications

Efficient communications over an arbitrary domain decomposition are obtained from the use of complex inter-
process communicator buffers (or communicators as they are called in MPI). These communicators are generated
on each process during the distribution of problem data over the virtual processor array completely transparent
to the user. They enable communications among specific subgroups of processors in the virtual topology. For
example, consider a scenario where angles, groups, and sweeps are fully decomposed on a processor array. If a
scalar flux is required for all groups in a particular coarse mesh cell, the reduction operation to collect all of the
angular fluxes for quadrature in their respective groups uses a communicator that links processors "owning" the
groups and angles for that specific coarse cell. PENTRAN builds communicators to selectively communicate
with selected processors containing:

> All angles for a specific coarse cell and energy group
> All energy groups and angles for a specific coarse cell
» All coarse cells and angles for a specific energy group

On the SP2, an upper limit of 2000 communicators exists in the 1996 IBM MPI-product implementation.
Other architectures have various limits on the number of possible unique communicators. To retain scalability,
PENTRAN will automatically minimize the number of unique communicators “built” during each problem
execution, re-using communicator buffers if they contact the same set of processors. Any excess communicator
buffers that are not useable by the processor (null value) are immediately released back to the available MPI
communicator buffer pool. Communications overhead is further minimized in PENTRAN by array packing
routines. All array data transferred among processors is packed by the sending processor, then unpacked by the
receiving processor after communications are completed.

34 Theory and Application



2.13 Process Mapping Arrays and Dynamic Memory Allocation

Following the assignment of the processors and communicators in the virtual processor array, phase space
variables assigned to a particular processor are tracked and computed independently. Local variable dimensions
(when practical) and process mapping arrays are used on each processor. This allows all memory to be completely
partitioned on each processor for all medium (and fine) mesh variables, including memory intensive angular,
scalar flux, and current () variables. Therefore, process mapping arrays contain the global coarse mesh cell, energy

group, angular sweep octant, and octant ordinate (Q ) indexes that are locally processed in locally dimensioned
arrays.

A global processor reference mapping array (kpmap) is also maintained by each processor (allocated identically on
each processor during problem setup), and permits access to the processor number containing any coarse cell,
group, sweep octant, and octant ordinate. This permits "send" and "receive" processors to be readily identified
if point to point message passing is required, as occurs in the case of reflective boundaries with angular
decomposition, or with spatial decomposition. When message passing is performed, global index references are
used during communications among processors. After messages are received, global variable array indexes are
translated back to local indexes for storage. Further, messages and various communications are continuously
cross-checked using the (kpmap) processor reference mapping array, the process mapping arrays, and the translation
routine to verify data integrity. Because the process mapping arrays store global angular, energy, and spatial variable
indexes for locally stored variables, any schemes that require specific ordering can be readily accomplished.
Therefore, rearranging the order that global variable indexes are assigned and stored in the process mapping arrays
alters where and in what order they are locally processed.

The bulk of memory (per processor) in PENTRAN is consumed by storing the cell centered and surface angular
fluxes. Grid arrays only need be as large as required for the largest spatial grid in a single coarse mesh cell, the
total number of local energy groups, and the total number of local angular sweep octants for the problem being
solved. Therefore, larger problems can be solved directly in PENTRAN by adding more processors with
increased decomposition. The amount of memory, in bytes, consumed by each processor, is roughly

approximated by

(2.66) Memory Bytes = A maxcme maxfme maxglc maxswp maxqdm

where the parameters represent a scaling constant A, the maximum local coarse meshes, fine meshes per local
coarse mesh, local groups, local octant sweeps, and angles per octant (bound by angular quadrature method),
respectively, for a processor. From experience, I-2% of processor memory should be reserved for system level
processes, caching, etc, depending on the machine; therefore, the left hand side of equation (2.66) should be
regarded as “free” memory per processor. The constant A is typically between 50 and 60 for the single
precision version of PENTRAN, depending on the compiler. Note Equation (2.66) assumes that the group

window or restart options (which can provide a significant reduction of memory requirements) are not used.

The amount of memory required for a specific calculation is accurately computed by the code when the
parameters at the top of an input deck are provided. The memory required and is compared to the maxmem
parameter to determine if the memory required exceeds the available memory. Therefore, knowing the memory
bound per node, one can set parameters to cover a general problem type, and determine how many processors
are required for a problem, depending on the decomposition approach used.
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NOTE: The user should avoid setting some parameters to values significantly greater than required for a
problem, since parallel efficiency can be directly affected. For example, the following parameters directly affect
message length (and therefore message passing time): maxleg, maxgrp, maxfmc, and maxqdm. The first two
parameters are the maximum Legendre moment required and the maximum global number of energy groups
required, respectively. Since it is conceivable that a heterogeneous parallel cluster could be used to run
PENTRAN under MPI, parameters should be set to allow the code to fit within the total memory on the
minimum capacity machine, since the same code must run on all machines simultaneously, albeit independently.
Note that all important parameter settings and total memory demand are also provided in the run logfile for
inspection by the user.

Some variables in PENTRAN are dimensioned using an integral memory approach for efficiency, as they would
provide a small memory savings, yet add appreciable message passing overhead. For example, group coarse grid
data and coarse cell spatial mapping data are stored using global problem dimensions on each processor.
Partitioned memory practices are applied when the memory savings potential is large, as in the case of
medium/fine mesh scalar and angular fluxes. Overall, due to a partitioned memory structure, the PENTRAN
code has true data parallelism for memory intensive arrays (the angular and scalar fluxes), and is therefore a
tully scalable code. Larger problems require more processors, although a capability of complete phase space
decomposition in the angular, energy, and spatial variables with discontinuous meshing offers great flexibility in
how subdomains are created to render a parallel transport solution. The most efficient parallel decomposition
scheme is, however, different for each problem, and is difficult to anticipate. The user should pay attention to
the following rules in solving a problem with PENTRAN in parallel:

* Adjust parameters to determine how many processors are needed as a minimum to solve a problem based on
the total amount of required memory per processor. (Setting maxmem=1 (Mb) and executing will report the
total per processor memory required, and then halt the code if the demands exceed I Mb. This is a convenient
approach the user may want to take when investigating the memory required for different decomposition
strategies, and can be performed running any version of the code, including single processor versions).

* Be aware of parameter limits. For example, if always using 2 processors for angular decomposition (which is
good to do since it does not degrade convergence in Cartesian geometry), the maxswp parameter can be set to 4
rather than 8, since a maximum of 4 sweep octants will be processed on each machine. Also note that the
number of medium meshes (maxmmc) should always be set equal to the number of fine meshes (maxfmc) per
coarse mesh, as currently required for the Simpified Multigrid method.

* Note that coarse mesh boundaries define subdomains for parallel spatial decomposition, acceleration
methods (rebalance and multigrid), and assignment of the numerical differencing scheme used.

*  When possible, avoid using small numbers of meshes inside each coarse mesh, since a processor
synchronization is required after each processor completes a coarse mesh (if reflective boundaries and/or spatial
decomposition is used). Use at least 25 fine meshes/ coarse mesh; however, more is better--this makess the
calculation increasingly coarse grained.

e TPMC is used on each surface of each coarse mesh connected to other coarse meshes. It is advisable to use
discontinuous meshing where needed, since TPMC is always being paid for.

* Use of angular and spatial (or both) decomposition can be beneficial to rebalance acceleration, which can
offer a significant increase in convergence (where it would not on one processor). This is due to ADS sweep
ordering/ partitioning, and will often offset the convergence penalty incurred from spatial decomposition. DZ
may incur more negative fluxes with increased spatial decomposition, and can exhibit non-convergence in
paralle] executions. In recent studies with optically thick problems, better performance was obtained by starting
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with DTW differencing as a first scheme in the adaptive algorithm, followed by application of EDW (by
PENTRAN) as needed.

* Avoid setting the maximum allowable DT'W weight (using the dtwmxw setting in Block 4) too low--a
premature shift to EDW could degrade convergence in source regions, since the EDW scheme performs best in
streaming cases. Still, if the maximum weight is still high and a shift is made, it is clear that EDW is required.
A shift from DTW to EDW can occur in a strong source region if the flux is relatively flat (low gradient),
where a step scheme would be ideal (causing the higher weights in DTW). Since EDW would not be practical,
forcing DTW (by using a -2 rather than a 2 in ndmeth) in these regions, or a specification of EDH may be
warranted. Don’t forget that meshing can be locked in or upgradable within a coarse mesh, depending on the
scheme used.

* If not using group decomposition, use the standard multigroup iteration method by setting methit=1. This
method allows for the most efficient use of particle downscattering by continuously accumulating the scattering
source through groups g-1 during convergence of group g, which can be a great savings when performing a P;

calculation. With complete group decomposition, the Hiromoto-Wienke I-level scheme may be best, selected

with methit=2.

* Be careful in using group decomposition on few group problems if the scattering ratios vary greatly. Since few
group problems are strongly coupled, one processor could tie up the rest with many iterations in a group with a
high scattering ratio. This effect may be ameliorated by activating automatic load balancing and/or multigrid
acceleration, although at the same time, load balancing might inhibit convergence.

* Use of widely varying medium and fine grids can hinder the multigrid effect--a ratio of two fine /medium
mesh along each axis is generally recommended. In cases where multigrid is not as effective (e.g. low scattering
ratios), use a low medium grid tolerance just to obtain a good first guess on the fine grid. Also, medium grid
tolerance beyond the truncation error of the differencing will not contribute to convergence.

* In fixed source problems with multigrid, the user is responsible for properly defining the source, including
the total number of source particles, on each grid.

* Be aware of disk storage requirements. Scratch files for FIDO input and material mesh specification will
typically require S bytes of disk space per mesh per processor; typically, this can be stored in / tmp space on
each processor. A typical run with binary scalar flux outputs can require disk space for O{(total # of meshes) *
maxgrp * 60 Bytes} bytes.

* Also, exercise caution when selecting high scattering moment dumps or angular flux binary dumps--file
space could be quickly saturated.

® PENTRAN should be executed in parallel to the greatest extent possible. Restricting the use of the code to a
single machine (when not already constrained by memory due to storage requirements) forfeits the effort
required to perform all of the complex mechanics necessary for complete phase space parallelization. Some of
these tasks include problem decomposition and distribution routines, partitioned memory mapping, range
checking, global-local and local-global mapping, and the overall coarse grid based, discontinuous mesh code
structure. Although there are some logical by-passes, many tasks required for parallel execution in PENTRAN
are also carried out in serial as well, and amount to what is considered parallel overhead. If parallel execution is
not possible, it is likely more practical to solve the problem with another S, code that is optimized for a single
CPU. Alternatively, PENTRAN was developed with the intent of solving very large problems on a distributed
parallel cluster that could not be solved in a practical time or fit under the memory and/ or disk constraints of a single CPU.
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2.14 Source Iteration Schemes

Two source iteration schemes are available: a “multigroup” source iteration (the GOFMGM routine) and a

Hiromoto-Wienke source iteration (the GOFCHM routine).

The GOFMGM “multigroup” routine iterates to convergence sequentially through each group, from group g
to gj, where (i<j), with an added convergence confirmation of the local scattering source if upscattering or
group decomposition is indicated. Progression to the next (local) group is not performed until convergence in
the current group is obtained. The convergence of the scattering source is computed using a norm based on the
relative change of the integral sum of the angular scattering source for all locally processed coarse mesh cells,
groups and angles. A tolerance of one order of magnitude greater than the pointwise flux convergence
tolerance is used to determine convergence on the scattering source (in the event of energy group
decomposition). Convergence on the scattering source is checked following reported convergence in all groups.
Parallel execution with any level of decomposition using the “multigroup” source iteration scheme is available
without restriction.

The GOFCHM routine is consistent with the one-level TPCS chaotic scheme of Hiromoto and Wienke
(1989), and can be used with any phase space decomposition strategy in PENTRAN. Excellent parallel
speedups have been demonstrated using various combinations of decomposition in the angular, energy, and
spatial variables using this scheme (Sjoden and Haghighat, 1996). In this Hiromoto-Wienke scheme, each
processor completes a source iteration in a single pass through a number of locally processed groups. Group flux
moments are updated by a summing reduction among participating processors for the next scattering source
calculation, but convergence is tested only on locally processed groups; this is followed by a new iteration, if
needed. On a shared memory machine, this iteration procedure is truly chaotic, as group flux moments are updated
for all processors instantaneously, resulting in chaotic convergence among the various groups scheduled on
different processors. That said, on a distributed memory architecture, like the SP2, this iteration scheme is
“chaotic” in name only since the group flux moment reduction is required following a sweep, which effectively
acts as a processor synchronization. However, since convergence is tested based on locally processed groups,
the user is able to identify the relative speed of convergence in each group, as PENTRAN reports when
convergence is achieved on each processor. Computation for all processors must continue, however, until all
tasks are converged, as message deadlocks will occur if one participating processor is deliberately stalled.

In general, if group decomposition is not used, the multigroup scheme will provide for faster convergence to a
solution, with some exceptions. First, if there is upscattering, tests have demonstrated that the Hiromoto-
Wienke scheme works best, since all local groups are iterated through sequentially, updating the upscatter
components continuously. Also, faster convergence with the Hiromoto-Wienke scheme resulted when the
simplified multigrid acceleration was used for any type of problem (Sjoden and Haghighat, 1996). As more

users apply the code to a variety of test problems, this contributes to the experience and bounds the efficiencies

of the code.
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2.15 Benchmarking and Parallel Performance

Several problem benchmarks computed for one, two, and three dimensional, multigroup, multi-region,
anisotropic problems have been tested using PENTRAN with DZ and DTW differencing and parallel domain
decomposition. In particular, exact agreement (within the convergence tolerance) was obtained between
solutions from the TWOTRAN-II , TWODANT, DORT/TORT, and THREEDANT single CPU production
codes and parallel PENTRAN solutions. Similar agreement was demonstrated for criticality and adjoint test
problems compared with TWOTRAN-II. An independent criticality benchamark using Hansen-Roach cross
sections was performed with PENTRAN against MCNP in multigroup mode. The criticality eigenvalues
rendered by each were the same within the limits of the cross sections and problem data. When comparing
with the two dimensional codes tested, PENTRAN calculations were performed in 3-D with reflective boundary
conditions along one of the three (x-y-z) axes. With single variable and hybrid phase space decomposition
strategies, 3-D test problems were solved using dedicated timing benchmarks using the Cornell Theory Center
IBM-SP2. Significant speedups were demonstrated, with high estimates of parallel code fraction (between 95%
and 98%, based on Amdahl’s Law).

An experimental PENTRAN benchmark modeling the complete Venus-3 reactor in 3-D has also been
performed. The Venus-3 reactor is owned and operated by SCK-CEN nuclear energy research laboratory,
located in Mol, Belgium. This facility houses Venus-3, a zero power research reactor designed to test partial
length fuel assemblies and various test fuels. The core includes sixteen "I15x15" sub- assemblies (as opposed to
the typical "I7x17" type). Although each assembly rack has fewer pins, the pin-to-pin lattice pitch is I.26 cm-
- resembling a conventional assembly. Therefore the Venus-3 facility serves as a practical model of a PWR
reactor. Agreement with experimental flux measurements in the Venus-3 facility was excellent. Comparing 370
experimental reaction rate measurements from nickel, indium, and aluminum dosimeters, 95% of the
calculated-to-experiment (C/E) values were within +/-10%, with the remaining 5% to within +/-15%.
Again, please consult the literature for specific test results. For the Venus-3 model, quite good agreement was
achieved between computational and experimental reaction rates, while achieving parallel efficiencies between
80% and 90%. The exact performance observed depended on the decomposition strategy and the number of
processors used for the calculation. A cross section cut of z-level 2 through the Venus-3 reactor model

enerated by PENMSH) is provided below:
g y P

Venus-3 Z-Level 2 rendered by PENMSH
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3. PENTRAN Input
3.1 PENTRAN Input Processing

All input to the PENTRAN code is performed using an input file read and processed by each independent
processor. The filename is always input by the user on processor I, and if the execution is parallel, processor 1
will broadcast the input filename to all other processors. (Due to constraints on some parallel file systems, the
name of the input deck is fixed to ‘prb.pen”). Parallel input is reported to be the fastest means of initializing
problem data on distributed memory machines, and typically involves far less overhead than processing the
input data on one process with message passing data to all other processors (Gerner, 1995). In the latter case,
since no other computations can be performed, all processes must pay for CPU time waiting for the source
process to finish, in addition to the latency penalty and bandwidth limitations of message passing. To avoid
these difficulties, input processing by each independent processor is the only input option, but is transparent to the

user.

To accomplish parallel FIDO data input on each processor that is completely consistent with FORTRAN
character/numeric data restrictions, a small (typically 5-50 kb) scratch file is created. To avoid file I/O
conflicts in a distributed file system, a uniquely named scratch file is generated and used independently by each
processor; the scratch file name (fileprefix(1:5)+ processortt +’.dat’) is based on the processor number. (A
uniquely named scratch file is necessary because a FORTRAN compiler may create a default un-named scratch file,
‘fort.2,” for all processes, even during parallel execution). Although independently naming scratch files may not
be necessary on all clustered workstation file systems, the current treatment prevents having to handle system-
unique implementations, and prevents “fixes” that in some cases might violate strict ANSI FORTRAN
programming. These FIDO scratch (.dat) files are only used for FIDO input processing and communicator
minimization, and can be deleted after problem execution.

Similarly, another set of independent scratch files is created for material specification in each coarse mesh. All
material scratch files (.mat) can be deleted following execution. On processor 1, the material file (containing
data identical to other .mat files) is intended for archive and is stored using an input file prefix+’ . MI’. The
material file is required if processing geometry output from a geometry file in Mathematica. The material file can
require ~S bytes per mesh per processor.
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Opverall, the input deck is composed of :

PENTRAN CODE PARAMETERS FOR THIS PROBLEM

Start Problem Deck
Problem Header card
Title Card 1

Title Card 10

Block I: General Problem Parameters T

Block 2: Geometry T

Block 3: Cross Section Parameters T

(Optional) Cross Sections (T required if xsecs within input deck)
Block 4: Control Options T

Block 5: Sources T

Block 6: Boundary Conditions T

Block 7: Print Controls T

Qutline of PENTRAN Parameters/Block Input

The input deck portion reserved for the parameter cards falls between the first line of each input deck,
beginning with “PENTRAN CODE PARAMETERS FOR THIS PROBLEM.” The parameter portion ends
with with “—eeeeeeeee Start Problem Deck ”. In reality, the labels are “dummy” lines and
can contain ANY ASCII phrase, as are the lines that contain the names of the parameter labels that serve as a

guide for the user.
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3.2 Code Memory Input Parameters and FIDO Data Formats

The input deck for PENTRAN is designed in a block structure, emulating the block structure used in the
DANTSYS code packages (O’'Dell, et al, 1995). After the code parameters for establishing the memory on each
processor are read in, subsequent input for each block is performed via the so-called free-field FIDO
implementation, which includes control characters avialable for abbreviated input syntax. It is true that most of
the issues surrounding the determination of correct parameter settings and FIDO commands are eliminated if
using the PENMSH and PENINP automated mesh and input generation codes. However, should one wish to
understand memory allocation issues, or tune an exisitng deck to implement a different decomposition, some
discussion is necessary. In 1997, PENTRAN was modified to allow for adjustable-sized arrays, which avoids
the issue of code recompilations for specific numbers of processors, etc, and permits more efficient use of
dynamic memory. The following is an example of a parameter card set that should appear at the very top of each
PENTRAN input deck. The user must enter the code parameters in a prescribed order for each parameter. Note
that above each card image is a text "dummy" comment line naming the parameters below it. The “Code
Parameters” section is the only part of the input deck that will not utilize FIDO notation.

Sample of Code Parameters at Top of Input Deck:
PENTRAN CODE PARAMETERS FOR THI S PROBLEM
MBXNMEM  MAXPCS, NBXgCm  MBXXSQ

80 8 4

maxcnct, naxcrs, nmaxmmt, nmaxnmed, mxfnc, maxfin
4 4 64 100 64 100
maxgrp, maxglc, nmaxswp, nmaxqdm nmaxnmat, nmexl eg
2 2 8 10 1 3
maxsrc, maxslc, maxcnr, nmaxlin, nmaxarr, nctlim
4 4 4 200 4000 20

————————————————— Start Problem Deck-------------------

Desciption of Each Code Memory Parameter

maxmem Maximum Process Memory, Mb maxglc Maximum Local Energy Groups
maxpcs Maximum No. Procs Allowed For maxswp Maximum Local Sweep Octants
maxgcm Maximum Global Coarse Meshes maxqdm Maximum Quadrature Angles/octant
maxxsg Maximum Restart Total Groups maxmat Maximum Material (xsec)Types
maxcmc Maximum Local Coarse Meshes maxleg Maximum Legendre Scattering Order
maxcrs Maximum Coarse Meshes on an axis maxsrc Maximum Global Fixed Sources
maxmmc Max Local Med Meshes/Coarse maxslc Maximum Local Fixed Sources
maxmed Maximum Medium Meshes on axis maxcmr Max Contiguous CMR /PCR Cells
maxfmc Max Local Fine Meshes/Coarse maxlin Maximum Lines in Input Deck
maxfin Maximum Fine Meshes on an axis maxarr Maximum # Inputs in FIDO vector
maxgrp Maximum Global Energy Groups nctlim Maximum FIDO Chars per Variable

Note that maxqdm can be determined from the order of the quadrature, where the maximum number of angles

per octant maxqdm=(N(N+2)/8) for a given Sn order; e.g. S8 requires that maxqdm=10.
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The FIDO syntax was originally implemented in several codes at the national laboratories. The following general

rules apply for an input deck:

* 1 to 79 column line (card) images, no “special columns,” no special ordering
* Data delimiters: blank space or comma
* All entries following a slash (/) are ignored

* Input is made according to the following syntax: varname=numberl number2... Named variables must be
input followed immediately by an “=""and the first entry in the array field, with no spaces berween the “="

element.  Any spacing option can be used for subsequent array elements (with or without commas, intermixed slashes,

and the first array

etc). No spaces or commas should be used immediately following a FIDO control character (see table).

* No distinction is made between real and integer data, although real entries used for integer fields are rounded.
Scientific notation should only use a lower case “e” for the exponent.

* A Block Terminator “ T " is required at the end of each data block. The block terminator should

immediately follow one or more spaces after (but always on the same line as) the last field data entry.

Summary of FIDO Array Control Characters

Cont rol Char acter Syntax Description

R- Repeat nRd Repeat data d n tines

| -Interpolate nld d+1 Interpolate n itens between d, d+1
C-sCal e nCd Scale n previous itenms by d

F-Fill” Fd Fill the remainder of array with itemd
Y-string repeat” nym Repeat mstrings n tines

L-Log Interpolate nLd d+1 Log Interpolate n itens between d, d+1
Z-Zero nZ enter Zero n timnes

S- Ski p** nsS Skip the next n data itens

A-poi nter set nA set pointer to nth data itemin array
Q Q repeat nQm repeat the last mentries n times

G G repeat nGm same as Q but change sign every repeat
N-N repeat nNm same as Q but invert order every repeat
M M r epeat nivim same as N but change sign every repeat
X-check entries nXx check the nunber of entries against n
& string skip’ & skips to the end of the string

“ldentified but not Currently supported in PENTRAN
“Data itens that contain FIDO control characters count as a single entry

* The number of FIDO control characters in a given array field is typically set to a maximum of 200
(netlim=200). If more than 200 FIDO characters per array field are required, the user should change this
maximum to reflect the new netlim value. (Note: the PENMSH code will provide a recommended upper limit).

* The number of lines in any input deck, including comments, is typically set to 1000 lines (maxlin=1000).
If more than 1000 lines are required, the user should change this parameter to reflect the new maxlin value.

* Interpreted FIDO is output in a logfile, generated on one or more processors. If fatal errors are encountered,
the cause should be identified in the logfile. (see the loglevel # phrase/option in the Header card of an input
deck). Note: On some computers, we have observed that if a block appears to be correct but still encounters
read errors/fatal errors, the user should add one (or more) spaces following a T block terminator. Also, block
errors encoutered in a block that seems correct may be due to an improper or multiple parameter entry in the
previous block. Read errors may also be encountered if input is specified beyond the 79 column limit in the

input deck.
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3.3 Problem Header Card and Title Cards

The problem header card is required, is a maximum of 79 columns, and serves as a problem label. Also, the
header card serves a special purpose for logfile and output file control when a “loglevel” string is present, described
below. The logfile is a file that displays processed FIDO input, as well as all warning and error messages, as-read
cross section data, problem decomposition information, rebalance acceleration matrix solution data, processor
iteration progress, and a process decomposition mapping table for all processes, cells, groups, and angles. The
decomposition mapping table provides the user with an outline of where parallel output data is located, again
depending on the automatic processor assignment. Therefore, disabling all logfiles is not recommended. A
logfile can, depending on the optional “loglevel” string located somewhere in the header card, be generated on
one or all processes; see the table below.

Summary of loplevel string in Header Card on Log/Qutput Files

loplevel string Effect

loglevel 0 Disables all logfiles.

No loglevel string Same as loglevel I “Default”

loglevel I Enables logfile on processor 1 only

loglevel 2 Enables logfiles on all processors

loglevel 3 Enables logfile and prints CMR-PCR/SR factors, xsec reads on processor 1 only
loglevel 4 Enables logfile and prints CMR-PCR /SR factors, xsec reads on all processors
loglevel all FEnables logﬁles) CMR-PCR /SR factors, xsec reads, and data output on all processors

Iteration progress will only be provided by a processor with an active logfile during execution, echoed to the
terminal and written to the logfile. A loglevel 4 string forces all processors to print a log file with CMR(PCR)/SR
results (if rebalancing is activated). Furthermore, a loglevel all string is similar to loglevel 4, but also forces all
processors to print an output file. The user should exercise caution with these settings when scaling to a large number of
processors, as 3-D file outputs may be voluminous (especially with complete angular decomposition), possibly
saturating all available disk space. Each log file is saved using the prefix of the input filename +".L" +
processor#f; each output file is saved using the input filename prefix+’.'+processor#. For example: on
processor 1 using input file test.pen, the logfile would be saved under fest.L1, and the output file would be saved
as fest. . More discussion on output is made under Block 7 (print options). On the IBM-SP2, processor
numbers (alias task or rank numbers) are numbered starting from zero.

In the PENTRAN code, all processors are assumed to be numbered from I to n. Therefore, all machine rank

identifications (e.g. resulting from an MPI_COMM_RANK call to identify the process rank) are shifted by

+1 for reporting purposes. When referring to the process rank within MPI commands for actual message passing,
reported ranks are converted back to machine ranks by adding -1).

There are 10 title cards required, 1-79 columns each, which can be used for problem description and
documentation. If unused, these must still remain as the first 10 blank lines following the header card.
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3.4 PENTRAN Input Blocks

Block I: General Problem Parameters

Block I includes general problem input parameters; all fields are required for code execution, and can be
defined in any order. Twelve possible parameters in this block include: ngeom, ngroup, isn, nmatl, ixcrs, jycrs,

kzcrs, decmpv, lodbal, timcut, tolmgd, modadj.

Summary of Block I Inputs

Variable Decription Syntax Example
ngeom Geometry identifier ngeom=23d
ngroup Energy groups in calc/window/above restart ngroup=Grps, Win_Grps, Restari_Grps
isn Order of 3-D lpvel symmetric quadrature isn:qmdmtwe_order

(52,54, S6, S8, S10, S12, S14, S16, S18, S20)
nmatl Number of materials in problem nmatl:NumbM_cj_Muteriuls
XCrs Number of Coarse x mesh zones ixcrs=Number_of_CoarseX
jycrs Number of Coarse y mesh zones jycrs:NumbM_cj_CourseY
kzcrs Number of Coarse z mesh zones kzers=Number_of CoarseZ
decmpv Decomposition vector decmpV:Angulur_wetg})t,

Group_weigkt, Sputiul Cell_wezgkt

lodbal Automatic load balancing lodbal=0 (off) or =T (on)
timcut Wall-Clock time cutoff limit, minutes timeut= Wall-clock_minutes
tolmgd Multigrid tolerance variable tolmgd:value
modadj Adjoint transport mode modadj=0 (forward) or =1 (adjoint)

Termination of the Block with a T' is required

Block I NOTES:

* The ngeom variable, at present, must always be =3d.

* Currently, the maximum allowed quadrature is S, (isn=38), although higher quadratures are in place, but
commented out in the SETQAD routine. This is to reduce memory requirements for single processor testing.
(note: the maxqdm parameter must be at least isn*(isn‘i'Z)/ 8)

* The ixcrs, jycts, kzcrs variables are the number of coarse mesh cells projected along the x, y, and z axes,
respectively, which yield (ixcrs*jycrs*kzcrs) total number of coarse mesh cells.

* The decmpv “decomposition vector” allows the user to specify the priority at which problem
decomposition occurs for each variable, optimizing decomposition (within the restrictions of the assigned
weights) during parallel execution. The input is an ordered triple of weight factors.

* The following special rules apply to decmpv weight factors:

I. A negative value over-rides any optimization and assigns the absolute value of the negative weight as the number of
processes for decomposition in that variable; if this number exceeds the number of available processors, scaling is as in

(3) below.

2. A zero value blOoCKS any parallel decomposition from occurring for that variable.
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3. A positive value scales normally based on the decmpv weighting vector. See the procedure described
below. If no clear variable bas decomposition priority, then the priority follows angular, group, and then space.

e In effect, decmpv defines the user desired aspect ratio of the 3-D processor array for the problem. During
execution, these weights are then compared with the actual number of S, directions (angles), energy groups, coarse
mesh cells required, and number of parallel processors executing. The number of processors physically assigned to
each level of decomposition is

* Decomposition procedure using decmpv: Consider a 3-D virtual rectangular parallelepiped processor array,
of dimensions A*G*S. A processors are devoted to angular decomposition, G processors are devoted to group
decomposition, and § processors are devoted to spatial (coarse mesh level only) decomposition, with a total
number of processors totalling (4*G*S). The decmpv vector allows one to prioritize which variable is
decomposed first, second, and third with then systematically performed by PENTRAN based on the weighting system
imposed by the user with decmpv. It is usually best to lock in a set number of processors for one variable, and then
let PENTRAN scale the other variables. For example, if a problem has 80 directions (isn=38), 2 energy groups,
and 4 coarse meshes, one decmpyv strategy could be decmpv=-2 1 0.5. Calling for 8 processors at execution, 2
processors would be locked in for angular decomposition, followed by maximizing group decomposition to 2
processors, followed by maximizing spatial decomposition with the remaining pool of processors. Note that in
this case, the decomposition priority is allocated to energy groups, since it carries the largest (most positive)
weighting factor. PENTRAN will attempt to autoscale to an assigned number of processors (as in the above
example) to a problem that is consistent with a user’s specified weighting vector.

# Also a consideration in assigning decmpv weights is that PENTRAN always breaks the angles up into sweep octants,
with a subsequent number of directions omega per octant. This will affect the way angular decomposition is applied for a
given number of processors, as there are two levels of decomposition that follow processor assignments in

angular decomposition: there are always 8 octants, and (isn*(isn+2) / 8) directions € per octant. Therefore,
octants should be decomposed using an evenly numbered processor assignment (see the next paragraph).

# The decmpv weights must be chosen carefully by the user, as setting a decomposition vector component too
high will block possible scaling of useful processor work to another decomposition variable. If the processor
utilization in each decomposition is less than 100%, execution balis. An integer number of processes must evenly divide so that integer
portions can be evenly distributed on allocated processors at execution time. This is imposed due to the possibility of MPI communication
synchronization failures among specific processors that are assigned odd numbers of angles, groups, or coarse mesh cells.

* ngroup declares the group structure of the calculation. The first field in this 3-vector is the total number of
groups in the current calculation. The second field is optional, and is the group width of the group window.
The group window is a minimum of I group wide. A window of 1 group would therefore use only a single
memory location through which to cycle energy groups, rather than saving angular fluxes in each locally
computed group. The third parameter (also optional) is the total number of restart groups converged from a
previous run. (note: this requires binary flux moment files to be available--see below). If positions (2) and (3)
are not set, then position (2) is set to the number of groups in the first field, and position (3) is set to zero.

* Comments on Restart: In the Restart procedure, flux moments are read as results from previous batch groups,
and are used to calculate the transfer scattering source inside the code with restart for the new group batch. A
new batch of groups will start with the medium grid if the simplified multigrid option is on, although there is
only a fine grid transfer source (ginscf). In such cases, the 'closest mesh' approach is used by projecting the fine
grid source back onto medium grid from the input fluxes. The cross sections are read in for the global total
number of groups to be computed based on the maxxsg parameter, since this parameter is the ceiling of the
number of groups to be considered among all multiple restart calculations. As an example, for a 20 group
(total) calculation, if there are ten groups (Group I to Group 10) in the first restart batch with supporting
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binary flux moment files from an initial calculation, the next 10 (Group I1 to Group 20) require calculation.
This requires all 20 groups to be loaded in for the cross sections, and therefore the parameter maxxsg=20.

One may use ngroup=10, I, 10 to indicate 10 groups starting at group 11 and proceeding through group 20, 1
group in the window, and groups I to 10 loaded from restart. Note that the same parallel decomposition must be used
to allow the binary files to be read by the correct processor. Depending on the processor 1D#, the binary flux
moments are stored as input filename + "’ + processor#. These restart files have the same format as dumped
flux moments that are stored as input filename + ".f + processor#f--these can be renamed for a restart run by
replacing the “.f with a “.r.” Note: binary files can be very large for large 3-D problems, especially so for P,

calculations. (Note: for a non-restart calculation, the maxxsg parameter should be set to 0).

* A wall-clock time cutoff via the timcut variable insures a “safe” problem stop and data dump after the
specified wall clock time is exceeded (in minutes). If timeut=0, no cutoff time is activated. The timcut option
gaurantees that the user will have final results if the execution time is limited for any reason. Execution is
halted after all processors signal a “wall time exceeded” synchronization, only after an iteration is complete,
whereupon data is dumped. Note that since no intermediate data dumps are performed to maximize parallel
efticiency, this feature provides a “safety net” if wall clock times are limited in a batch queue structure. This is
also another means of job control, in addition to solution tolerances and maximum iterations (Block 4).

* Load balancing is handled by the code automatically if selected by the user. (The automatic load balancing
option is selectable via the lodbal=1 switch in Block I). For example, if a coarse mesh contains significantly
more medium/fine meshes relative to other coarse meshes, a sequential coarse mesh assignment may lead to an
imbalanced processor workload; one processor effectively drags down the rest while it finishes calculations, and
others sit idle waiting for message completion. With load balancing, the workload for each coarse mesh is
evaluated and ranked, and cells with the densest medium/fine meshing and/or highest within group scattering
ratio are paired with cells having the sparsest meshing and/or lowest scattering ratio. Coarse mesh cells and/or
energy groups are then reracked according the workload in each, thus attempting to force each processor to
carry the same computational load. While this spreads work (more) evenly, there are drawbacks:

I. An important disadvantage of automatic load balancing is that it may limit the effectiveness of the
automatic red-black coloring feature (Block 4), as it is possible only “red” cells are assigned to a processor
based on the computational load.

2. The rerack of cells may also inhibit problem convergence with regard to angular flux sweep progression.

* The tolmgd variable defines the grid structure to be used in solving the transport problem. tolmgd<O
indicates the fine grid only is used in the iteration sequence. tolmgd=0 indicates the medium grid only is used
in the iteration sequence. Note that the mathmg array sets how materials on the medium grid are used, either
using a “closest approach” or homogenized by volume assignment (see Block 2). tolmgd>0 indicates a
simplified multigrid sequence is used, where a solution is converged on the medium mesh grid to a relative local
tolerance equal to tolmgd, whereupon the values are projected to the fine grid (where medium grid values are
overwritten with projected fine grid values to conserve memory).

* Because converged medium grid values are projected and overwritten, there is no return to the medium grid
—hence, the “simplified” or “slash” multigrid algorithm. The user is free to determine the tolerance for tolmgd
and all grid structures. However, if too small a tolerance is chosen, the time spent converging to the less
accurate medium mesh may outweigh the benefit of using two grids. If the tolmgd tolerance is set too loosely,
the maximum benefit of using the multigrid acceleration will not be realized to provide an effective pre-
conditioning of the fine grid values. Experience has shown that tolmgd should fall somewhere between 20 and
200 times the fine grid tolerance, but should also be no greater than the truncation error of the medium grid.
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* Since coarser grids require more iterations to converge (in spite of being fewer in number), the difference
between grids should not vary significantly from a factor of two in any one direction. If the problem is a
criticality problem, the outer iteration tolerance used for the medium grid is implicitly determined from
(tolrngd/ tolin*tolout), but is also restricted from being any greater than tolmgd. Note that no differencing is
based on the coarse mesh grids.

* Based on testing already performed, multigrid performance is enhanced when the Hiromoto-Wienke source
iteration scheme (methit=2) is selected, especially in the case of criticality problems. See Block 4.

* To solve adjoint transport problems, the procedure has been somewhat automated in PENTRAN. By setting
modadj=1, forward cross sections are reversed internally, with full automatic transposition of the scattering

matrix, with VO ; g and Xg also transposed internally. However, the user must recognize that:

I. Group G is reported as Group I

Group 1 is reported as Group G (groups are reported in reverse order)
Directions f) are implicitly —f)

A Group G Adjoint Source is input/ reported as a Group I Source

A

A Group 1 Adjoint Source is input/ reported as a Group G source
* A warning message is printed in each output file describing the effect of the adjoint calculation on the

output data. Essentially, as long as the user has properly defined the source, the adjoint calculation proceeds
automatically; the user must take heed of the warning message in analyzing the adjoint function output.
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Block 2: Geometry

Block 2 includes problem geometry input parameters; all fields are required for code execution, and can be

defined in any order. Twelve possible parameters in this block include: xmesh, ixmed, ixfine, ymesh, jymed,

jyfine, zmesh, kzmed, kzfine, nmattp, flxini, mathmg,

Summary of Block 2 Inputs

Variable Decription Syntax Example
xmesh coarse X mesh bdys xmesh= Comse_dey_ I

Coarse_xBdy_2, ... Coarse_xBdy .11
ixmed medium x mesh intervals in coarse mesh ixmed=medium_x_in_Coarse_Cell_1..
ixfine fine x mesh intervals in coarse mesh ixfine=fine_x_in_Coarse_Cell 1, ...
ymesh coarse y mesh bdys ymesh: Com'se_dey_ I

Coarse_yBdy_2, ...Coarse_yBdy (s )
jymed medium y mesh intervals in coarse ymesh jymed:medium_y_in_Course_CL’ZZ_ 1.
jyfine fine y mesh intervals in coarse mesh jyfine=fine_y_in_Coarse_Cell_1, ...
zmesh coarse z mesh bdys zmesh= Com'se_zde_ I

Coarse_zBdy_2, ...Coarse_zBdy 4,11

kzmed medium z mesh intervals in coarse mesh kzmed=medium_z_in_Coarse_ Cell_1..
kzfine fine z mesh intervals in coarse mesh kzfine=fine_z_in_Coarse_Cell_1...
nmattp nmattp card for each coarse mesh nmattp=coarse mesh #, material#_in_fine-mesh_1..
flxini initial scalar flux in each coarse mesh flxini=initial_flux_in_Coarse_Cell_1..
mathmg sets material/ homogenization for med grid mathmg:Setting_in_Course_Cell_ L.

0: use closest matl; I:use homog matl

Termination of the Block witha T' is required

Z level 2

Cell Numbering Progression (z{y(x)))

Block 2 NOTES:

e Al three dimensional cells are numbered sequentially according to
a (z(y(x))) integral loop count, where coarse cells are
numbered by proceeding along all x, incrementing y,
proceeding until the limit of x and y cells are reached, then
incrementing z, and so on.

*  This numbering scheme is also used throughout the bierarchy of cells,
where medium and fine cells within each coarse mesh follow this mapping
scheme. For example, consider that ixcrs=3, jycrs=2,
kzcers=2, or 12 total cells. Coarse cell numbers progress
along x, then y, then z from I to 12, as shown in Fig 3.3.

* Benefits of the sequential numbering scheme, used for all
grid hierarchies (coarse, medium, and fine grids) are: (1) it
allows for a more compact, sequential dimensioning of
spatial arrays, reducing the span of arrays in memory; (2)
looping through spatial variables uses a one dimensional
index; and (3) surrounding cells are easily identified using
forward and reverse translation mapping functions, enabling
efficient problem setup.
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* Medium (fine) mesh intervals along each axis (e.g. x, y, and z in ixmed, jymed, kzmed, ... respectively) must
be assigned for each coarse mesh number, in order, using the prescribed mesh numbering scheme. Again, Taylor
Projection Mesh Coupling (ITPMC) is used to couple transport sweeps across cell surface interfaces where medium
(fine) meshes may be discontinuous.

* An nmattp card must be present for each coarse mesh number. The first entry in each nmattp card is the
coarse mesh cell number, followed by the material number assigned for each fine mesh contained in the coarse
mesh cell using the order of the standard sequential mesh numbering scheme (proceeding along all x,
incrementing y, ...). The material number must directly correspond to the rank order of the material in the
cross section input deck. Material numbers must not exceed the number of materials (nmatl) defined in Block

I.

* The flxini array, if non-zero for each coarse mesh, is energy group-weighted by chig (in Block 3), where chig
is the fission spectrum group probability distribution variable. The flxini values are weighted by chig even if there
is no fission present. Note: fission is only computed if the problem type (nprtyp in Block 4) is set for a criticality

eigenvalue problem. If a problem is solely a fixed source problem, any fission cross sections read in.

® The mathmg array sets up how materials are treated on the medium grid, and requires a value for each
coarse mesh number, assigned according to the sequential numbering scheme. If set to zero for a coarse mesh
cell, this indicates that the material defined on the medium grid shall use the “closest approaching material”
defined on the fine grid as a medium grid material specification. If set to unity, the cross sections on the
medium grid are homogenized by volume based on the fine grid material specification for that coarse mesh cell.
If material boundaries can be approximately resolved, the closest approaching material setting may perform
best.

* A geometry file is always generated (unless deactivated in Block 7) as fileprefix+‘geo’. This file contains a
Mathematica™ graphics command deck to automatically render a full color, 3-D geometry image of the problem.
This is useful for viewing/ verifying problem geometries. Read the filename.geo file into Mathematica™ directly as
a text file, or cut and paste portions of it from a text editor. Using Mathematica™, coarse meshes can be made
invisible for viewing other coarse meshes buried within the problem structure. See the cover of this manual for
examples. Mathematica™ is available from Wolfram Research, Inc for Unix-x stations, PC-Windows, and Mac
operating systems. A very powerful workstation may be required to render a suitable 3-D image for very large
problems.

* Translations between sequential cell numbers and ixcrs, jycrs, and kzcrs coordinate position are made by

calling the CELMAP and CIVMAP routines in PENTRAN.
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Block 3: Cross Section Parameters

Block 3 includes problem macroscopic material cross section parameters; all fields are required for code
execution, and can be defined in any order. Ten possible parameters in this block include: lib, legord, legoxs,

nxtyp, ihm, iht, his, ihng, chig, nxcmnt.

Summary of Block 3 Inputs

Variable Decription Syntax Example

lib cross section library location lib=cards (input card images from input deck)
lib:fﬂeﬁlemmw ﬂom‘l xsecs from filemzme)

legord Legendre scattering order (up to 7) legordzsmttering_order (O,I,3,5, or 7)

legoxs Legendre scattering order (up to 7) legoxs=scattering_order (0,1,3,5, o 7)

of cross sections to be read

nxtyp cross section type (See Notes) nxtyp=xsec_type (0,1,2,3,4,5,6,7, or 8)

thm number of rows of xsec data thm=position_of _last_row

iht total xsec row position tht= toml_xsec_row_position

ihs within group scatter xsec ths=g->p xsec_row_position

ihng position of last neutron scatter xsec ithng=last_neutron_axsec_row_position

ptior to coupled gamma xsecs

chig group fission probabilities for each chig= mat1_Grpl_prob, mat1_Grp2_prob, ...
material (1,2,...), by (group...) mat2_Grpl_prob, mat2_Grp2_prob, ...
nxcmnt number of cross section comment cards nxemnt=rnumber_of_79_col_cards

Termination of the Block witha T is required

Block 3 NOTES:

*  The library input lib can be from a datafile or on card images in the input deck.

*  Cross sections read directly from the input deck should immediately follow Block 3, and must be
terminated with a Block “T” terminator on the same line as, and immediately following the last cross section
entry.

*  Zero fields should be used to “pad” null values in the scattering matrix, as applicable.

e All filenames assume a path with an 8 character filename prefix, followed by a 3 character (maximum)
filename suftix (“xxx").

*  The Legendre order legord must be no greater than isn-1 (from Block I) to properly integrate Legendre
expansions using level-symmetric quadratures.

*  The Legendre scattering order of the cross sections legoxs can equal or exceed the the isn value, as long as
the scattering order called for in computations is less than isn.

* Both legord and legoxs must be zero or odd (to be able to represent peaked scattering situations with odd
moment expansions). Violating these rules results in an execution halt.

*  The cross section type parameter nxtyp allows for 9 different cross section file formats (0-8). The format
refers to row or column input, ASCII or BINARY data types, and whether or not the cross sections include the
(21+1) normalization factor for Legendre moments.
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¢ The available formats are listed as follows:

: STANDARD (row) form: NO, Legendre consts NOT pre-multiplied

: STANDARD (row) form: YES, Legendre consts ARE pre-multiplied

: NON-STD (col) form: NO, Legendre consts NOT pre-multiplied

: NON-STD (col) form: YES, Legendre consts ARE pre-multiplied

: STANDARD (row) BINARY FILE form: NO, Legendre consts NOT pre-multiplied
: STANDARD (row) BINARY FILE form: YES, Legendre consts ARE pre-multiplied
: NON-STD (col) BINARY FILE form: NO, Legendre consts NOT pre-multiplied

: NON-STD (col) BINARY FILE form: YES, Legendre consts ARE pre-multiplied

: GIP-ORNL BINARY FILE form: YES, Legendre consts ARE pre-multiplied

YVVVVVVYVVYVYY
0NN O W= O

*  There is no difference between ASCII and BINARY file read formats in the standard row and non-standard
column form; BINARY data is assumed to be stored in the same relative order as the ASCII form. The GIP-
ORNL format assumes that a binary file, generated by the GIP program for mixing materials, generated the
cross section file. (The GIP-ORNL format reads blocks of data for all materials and Legendre orders by
energy group, which differs from the STANDARD and NON-STANDARD formats).

* To be compatible with binary file formats, all cross sections are input and stored as single precision.

*  Examples of the above file formats for a typical 7-group set of cross sections are below. In all cases, the
iht, ihs, and ithm parameters are indicated, as applicable. Since there are no gamma groups, thng=0; this
parameter is in place as an indicator. Note the structure of each is repeated for every scattering moment.

> STANDARD FORMAT (rows) With UP and DOWN Scatter: tht=3, 1ths=10, thm=16

...nxcrmt conmment cards (check file for conpliance if lib=file:filename) ..
sigal rnsigfl sigtl sig7->1 sig6->1 ...sig2->1 sigl->1 0 0 0...
sig7->2 ...sig3->2 sig2->2 sigl->2 0 0..
...sig4->3 sig3->3 sig2->3 sigl->3 0...
...Sigbh->4 sig4->4 sig3->4 sig2->4 sigl->4...
...Sig6->5 sigh5->5 sig4->5 sig3->5 sig2->5...
..Sig7->6 sig6->6 sig5->6 sig4->6 sig3->6...
. 0 sig7->7 sig6->7 sigh->7 sig4->7...

siga2 rnsigf2 sigt2
siga3 rnsigf3 sigt3
sigad rnsigf4 sigt4
sigab rnsigf5 sigth
sigab rnsigf6 sigté
siga7 rnsigf7 sigt7

[elofololoNe]
[elololola)]

> STANDARD FORMAT (rows) With DOWN Scatter only: iht=3, ihs=4, ihm=10

...nxcmt comment cards (check file for conmpliance if lib=file:filenane) ...
0 0 0

sigad4 rnsigf4 sigtd sigd->4 sig3->4 sig2->4 sigl->4 0

siga5 rnsigf5 sigth5 sig5->5 sig4->5 sig3->5 sig2->5 sigl->5
siga6 rnsigf6 sigt6 sig6->6 sigh->6 sig4->6 sig3->6 sig2->6 sigl->6
siga7 rnsigf7 sigt7 sig7->7 sig6->7 sig5->7 sig4->7 sig3->7 sig2->7 sigl->7

sigal rnsigfl sigtl sigl->1 0
siga2 rnsigf2 sigt2 sig2->2 sigl->2 0 0 0 0
siga3d rnsigf3 sigt3 sig3->3 sig2->3 sigl->3 0 0 0
0
0

[clolololoNe]
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» NON-STANDARD FORMAT With UP and DOWN Scatter: iht=3, ihs=10, ihm=16

...nxcrmt comment cards (check file for conpliance if

sigal

rnsigfl
sigtl

sig7->1
si g6->1
si g5->1
si g4->1
sig3->1
sig2->1
sigl->1

[ejolojeolole)

si ga2
rnsigf 2
sigt2

0
sig7->2
si g6->2
si g5->2
si g4->2
si g3->2
sig2->2
sigl->2

[ejeolofole]

si ga3
rnsi gf 3
sigt3

0

0
sig7->3
si g6->3
si g5->3
si g4->3
si g3->3
si g2->3
sigl->3

o

0
0
0

si ga4d
rnsigf 4
sigt4d

0

0

0
sig7->4
si g6->4
si g5->4
si g4->4
si g3->4
sig2->4
sigl->4

0

0

0

si gab

si ga6

lib=file:fil ename)
si ga7

rnsigf5 rnsigf6 rnsigf7

sigth

sigté6

[eleolojole]

si g7->6
si g6->6
si g5->6
si g4->6
si g3->6
si g2->6
si gl->6
0

sigt7

[elofololeNe]

sig7->7
si g6->7
si gb->7
si g4->7
si g3->7
si g2->7
sigl->7

» NON-STANDARD FORMAT With DOWN Scatter: tht=3, ths=4, thm=10

...nxcrmt comment cards (check file for conpliance if lib=file:fil enane)

sigal si ga2 si ga3 si gad si gab si ga6 si ga7
rnsigfl rnsigf2 rnsigf3 rnsigf4 rnsigf5 rnsigf6 rnsigf7
sigtl sigt2 sigt3 sigt4d sigth sigtée sigt7
sigl->1 sig2->2 sig3->3 sig4->4 sighs->5 sig6->6 sig7->7
0 sigl->2 sig2->3 sig3->4 sig4->5 sig5->6 sig6->7
0 0 si g1->3 sig2->4 sig3->5 sig4->6 sigh->7
0 0 0 sigl->4 sig2->5 sig3->6 sig4->7
0 0 0 0 sigl->5 sig2->6 sig3->7
0 0 0 0 0 sigl->6 sig2->7
0 0 0 0 0 0 si gl->7

*  chig is the group fission probability for each material, and must correspond to each material number (in the
order the materials are read in). Therefore, chig must be input as a vector of length ngroup*nmatl. Note that

in the absence of fission, chig is still used as a weighting factor for the initial guess of scalar flux in each coarse
mesh (ﬂxini——see Block 2). For this reason, chig is un-normalized. The user should insure when Sfission is present, group fission

fractions sum to 1.0.

* nxcmnt is the number of comment cards preceeding each Legendre order cross section set. (This setting

has no effect on GIP-ORNL cross section formats). If capital letters are used in the cross section comment

tields, the comments should be preceeded by a slash to avoid confusion with FIDO control characters during

input processing.

*  Adjoint cross sections are autoimatically transposed internally by setting the modadj parameter--see Block I inputs.
By transposing the cross sections (inside PENTRAN), a forward code can be used to solve for the adjoint

function, with proper attention to source definitions and fission parameters. Formats for up- and down-scatter

and down scatter only are provided here for completeness.

53

PENTRAN Input



» STANDARD ADJOINT TRANSPOSED FORM,UP-DOWN Scatter: tht=3,ths=10, thm=16

si ga7
si ga6
si gab
sigad
si ga3
si ga2
sigal

sigt7
sigté
sigth
sigt4d
sigt3
sigt2

igtl

sig7->1

OO0OOO0OO0OO0o

sig7->2 ...
sig6->1 ...

[eleololole)]

si g7->6

si g6->5

..sig5->4

..Sig4->3

...sig3->2

..sig2->1
. 0

sig7->7
si g6- >6
si g5->5
si g4->4
si g3->3
si g2->2
sigl->1

0
si g6->7
si g5->6
si g4->5
si g3->4
si g2->3
sigl->2

0 0...
0 0...
si g5->7 0.

si g4->6 sig4->7...
si g3->5 sig3->6..
si g2->4 sig2->5..
sigl->3 sigl->4...

» STANDARD ADJOINT TRANSPOSED FORM, DOWN Scatter: tht=3,ihs=4, thm=10

si ga7
si ga6
si gab
si ga4d
si ga3
si ga2
sigal

sig7->7
si g6- >6
si g5->5
si g4->4
si g3->3
sig2->2
sigl->1

0
si g6->7
si g5->6
si g4->5
sig3->4
sig2->3
sigl->2

0
0
si gb->7

0
0
0

si g4->6 sig4->7
si g3->5 sig3->6 sig3->7

si g2->4 sig2->5 sig2->6 sig2->7

clolole]

[eleololole]

[elofololoNe]

sigl->3 sigl->4 sigl->5 sigl->6 sigl->7
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Block 4: Control Options

Block 4 includes execution control options. Fields can be defined in any order. Twelve possible parameters in
this block include: nprtyp, nrdblk, tolin, tolout, maxitr, methit, methac, ncoupl, ndmeth, nzonrb, dtwmxw,
nquit.

Summary of Block 4 Inputs

Variable Decription Syntax Example
nprtyp problem type classification nprtyp:problem_type ([—maxsrc, 0, maxsrcD
nrdblk automatic red-black coloring switch nrdblk =0 (off) or =1 (on)
tolin inner local flux iteration tolerance tolin=tolerance OR tolin=CM]1 _tol, CM2_tol...
tolout outer criticality tolerance, med grid multiplier tolout=tolerance, med_grid_multiplier
maxitr max inner & outer iters/ group, k-inner iter limit maxitr=max_no_of_iterations, m’timlity_inner_limit
methit source iteration method methit=method_no

=1 (“Multigroup”) or =2 (“Hiromoto-Wienke”)
methac acceleration method, csda parameters methac=method_no (0,1,2,3,4,5, or 6), csda parameters
ncoupl Taylor Projection ( IPMC) coupling order ncouplzcoupling order (Oor 1)
ndmeth differencing method by coarse mesh no ndmeth= Coarse I_diffmeth, Coarse2_diffmeth, ...

=0(DD), =1(DZ), =2(DTW), =3(EDW), =4(EDH)
nzonrb zones, damping, skip iterations for methac nzonrb=number_of zones, damping _fact, skip_Irer
dtwmxw maximum acceptable DTW weight dewmxw=maximum_weight ([0.5,1.0])
permitted before a shift to EDW is made recommended is 0.96

nquit # iters a non-converging group is stopped nquit:number_g’_itemtions

Termination of the Block witha T is required

Block 4 NOTES:

* nprtyp determines the type of transport problem to be solved:
+ nprtyp=0 indicates a criticality eigenvalue problem (no fixed sources)

+ nprtyp>=1 corresponds to I or more fixed sources, equal to the number of fixed sources in the
problem. There is one fixed volumetric and planar source permitted for each coarse mesh--see Block S. This

input requires sdef cards, defined in Block 5.

+ nprtyp<=-1 is a combination of the first two options: a criticality k-eigenvalue with fixed sources
present

4+ the number of fixed sources is limited by the maxsrc parameter in PENTRAN

* tolin defines the maximum local relative flux error for convergence. The tolout variable defines the relative
tolerance on the k-effective system eigenvalue, and is only used in a criticality calculation. Solution convergence
progression, including intermediate k-effective values and relative tolerances, are stored in logfiles, if used (see
the loglevel indicator in the Header card). The final system k-effective is reported in the output file.

* Note that while a solution may be converged based on the local relative convergence criteria tolin, the
solution must satisty the scalar balance equation to be converged. The integral system balance is collected and

computed on each processor during problem output. If the net balance reported is not on the order of the
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solution tolerance (e.g. within an order of magnitude of the solution tolerance, sometimes a bit more if the
problem is fully decomposed in parallel), then convergence has not been reached.

* maxitr is a vector containing iteration limits. The first entry is a standard inner iteration limit. The second
(optional) entry is an inner iteration limit for criticality problems. The first entry iteration limit holds for both
the inner and outer loop tolerances. It is recommended to set the maxitr variable to be based on the inner
iteration loop. A data dump occurs is maxitr is exceeded. The wall clock time (timcut in Block 1) can be used
to control execution for the outer loop, if necessary.

* methit refers to the algorithm for the source iteration sequence, either the “multigroup” (methit=1) method or
the one-level scheme (methit=2) of Hiromoto and Wienke (1989). Either scheme may be used with any phase
space decomposition strategy, although multigrid acceleration seems to perform best with the Hiromoto-

Wienke scheme (see Sjoden and Haghighat, 1996).

* methac is a vector input variable, where the first position refers to the rebalance acceleration method used.
At present, damped Coarse Mesh Rebalance (CMR ) and System Rebalance (SR) are available, based on coarse
mesh cells. Damping restricts oscillations and divergence in the rebalance (Rhoades, I981). Note that
rebalance is used to scale only the scalar flux (as opposed to the angular fluxes), and is performed to avoid
additional reductions if angular decomposition is used. Options for methac are:

1. methac=0: No Acceleration

2. methac=1 : SR only (based on nzontb coarse mesh cells-see below)

3. methac=2 : PCR only (based on nzontb coarse mesh cells-see below)

4. methac=3: Alternating PCR/SR (based on nzonrb coarse mesh cells-see below)

5. methac=4, 5, or 6: Same as 1,2,3, respectively, but utilizing global synchronization.

Subsequent vector positions are for CSDA (collapsed source diffusion acceleration) sources. Note: at present,
this is an unproven method by which to accelerate the transport solution, and is not recommended for use at
this time. This is a completely experimental feature where an analytical diffusion approximation is used in each
energy group to preset flux iterates in PENTRAN based on a collapsed source from integration over problem
geometry. The vector positions for this are as follows, starting with methac position (2) entry: csda init
OffIO/Point:I/CosineZZ), csda xcenter (O=auto), csda ycenter (O=auto), csda zcenter (0=auto), inner
iterate # for application use of csda, outer iterate # for application of csda. Zero entries for “center” values
force PENTRAN to determine an average source location based on the distribution. “Point” refers to a
collapsed point source; “Cosine” refers to a cosine source distribution.

* methac=1,2, or 3 settings use processor communications for rebalancing (using group-wise processor
communicators), and can be used with any source iteration scheme.

* methac=4 5, or 6 requires an intermediate step of global process communications (which can be
significantly more expensive), and can only be used with methit=2. This distinction between the use of
communications in rebalancing methods was necessary due to limitations encountered on some parallel system
implementations of the MPI standard.

* PCR rebalancing is performed using a direct Cholesky-LU factorization of the group rebalance matrix (the
rebalance matrix is stored as an augmented system in an array, and is replaced in memory by Cholesky-
factorized lower and upper triangular matrices). There is a limit on the size of the augmented rebalance matrix.
Although the rebalance matrix is dimensioned as n x (n+1) of single precision numbers. The number of
contiguously numbered coarse mesh cells (e.g. a block of coarse meshes) that can be rebalanced at one time is
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limited by the maxcmr parameter in PENTRAN; as a result, multiple “blocks” of rebalance operations may be
required, depending on how many coarse meshes are defined for a problem. A direct solution (rather than an
iterative one) is used for rebalance in PENTRAN because efficient synchronization required, especially with
complete phase space decomposition.

¢ The nzonrb vector permits the user to specify: (1) how many coarse meshes should be considered in a
rebalance zone (up to a current maximum of maxcmr), loaded into position 1; (2) the damping factor to be
used with partial current rebalance, where dampf <I is under-damped, dampf =1 is critically damped, and dampf
>1 is over-damped (in general, not recommended), loaded into vector position 2; (3) the iteration period wherein
rebalance is skipped, loaded inot position 3 of the nzonrb vector. If the execution is parallel, a check is made
to determine if the locally assigned coarse meshes (determined by the nzonrb(1) setting) belong to the zone of
coarse meshes undergoing rebalance; if not, rebalance is bypassed, saving execution time. The user should be aware
that setting nzonrb too small (covering a small block of coarse meskes) may cause iteration instability and divergenre of the solution, as

may using overiiamping~~g‘ course, this is probi&m dfpmdmt.

* ncoupl defines the order of coupling for Taylor Projection Mesh Coupling. Setting ncoupl=0 forces Oth
order, while setting ncoupl=1 implements first order coupling. A zero setting forces all coupling coefficients
to be zero, thus invoking only a straight flow balance at each interface during a transport sweep. Note that
restricting the coupling to 0th order does not save significant computational work.

* ndmeth defines the spatial differencing method to be used, and is a vector containing the differencing
method to be used_in each coarse mesh cell. At present, setting this =0 selects DD (with no fixup, no
upgrade); =1 selects DZ (can be upgraded to DTW, EDW); =2 in each coarse mesh selects DTW (can be
upgraded to EDW); =3 selects EDW, while =4 selects EDH. An upgradeable diamond (DZ) setting will
automatically use DTW differencing if a negative (set to zero) flux fixup is detected during any angular flux
sweep. From there, if a DTW maximum weight (in any direction) is greater than dtwmxw, then the DTW
method is upgraded to EDW. This allows EDW to take over from DTW, since high weights in DTW tend

to occur in thicker cells with streaming, where EDW is more accurate. A negative differencing number locks

that method (with the exception of DD, already locked using a zero setting), blocking upgrade options; for
example, setting ndmeth to -1 in a coarse mesh cell locks DZ differencing regardless of fixup calls, blocking

any upgrade. For more information on differencing, refer to Chapter 2 of this document.

* dtwmxw is the optional user specification of the maximum accepted weight for DTW (if used in an
adaptive differencing status) that is used to trigger an upgrade to EDW differencing, or use of EDW rather
than DTW for a given discrete ordinate in the case fo EDH differencing, If this is not specified in the input
deck, a value of 0.96 is assumed. Note that dtwmxw must fall within the valid range for DT'W weights:
[0.5,1.0].

* nrdblk=1 can be set to engage automatic red-black coloring based on problem coarse meshes, used only to

accelerate parallel spatial decomposition. Coarse meshes are re-ordered in a “stacked checkerboard” sequence

to use the most recent iteration angular fluxes as soon as they are available, to the greatest extent possible. Note
that use of this setting when not performing parallel spatial decomposition can (in some cases) hinder
convergence, and should be avoided. A warning message is issed if nrdblk is engaged without spatial
decomposition. Also note that the effectiveness of red-black coloring may be limited by automatic load
balancing, especially if only “red” (or “black™) cells are allocated to one processor due to load reracking (see

Block T).

* nquit sets the maximum number of iterations permitted to stop a non-converging group when that group
fails to converge based on a specific location (coarse and medium or fine mesh number) in the problem. The
defailt value is nquit=4 if no value is specified. After failure, the group is set as “converged” with warnings.
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Block 5: Source Definition and Options

Block S includes source definition options. Fields can be defined in any order. Ten possible parameters in this
block include: nsdef, nscmsh, ssnrm, stef, serg, smag, spacpf, omegap, scalsf, tkdef.

Summary of Block S Inputs

Variable Decription Syntax Example
nsdef Source type of each source nsdef=source_type , source2_type, ...

(O=volumetric, I=planar source)

nscmsh Corse mesh number of each source nsemsh=coarse_mesh#_sourcel, ...
ssnrm ** Surface Source normal vector ssntm=ul vl wlu2v2 w2, ..
sref Atbitrary reference coordinate for each source sref=x1,yl,z1x2y222 ...
serg Source energy distribution with respect to serg=g l_prob_soum’ I gZ_prob_souﬂe L.

energy groups ( L..ngroup), each source
smag Source integral magnitude, each source smag=source | _magnitude, source2_magnitude ...
spacpf * Soutce fine mesh spatial dist, specified spacpf=srctf, grp#, Heells, cell 1_prob, cell2_prob ...
omegap * Source angular dist, specified by octant no omegap=src#f, grptHt, octant#, Q ,_prob;mg,,_prob.
scalsf * Source fine mesh scale factor, specified scalst=src#f, prp#t, scale_factor ...
rkdef Criticality eigenvalue estimate for system rkdef= kgﬁ_estimute

*Optional

#Requited for each source if nsdef=1 detected

Termination of the Block witha T' is required

Block 5 NOTES:

* In the event of a criticality problem with no fixed sources, only the tkdef card is required. rkdef is the user-
supplied initial guess for the integral system & p (criticality eigenvalue). In the event of a fixed source problem
with no fission, the tkdef card is not required.

* All sources are defined as isotropic with equal probability in each fine spatial mesh wunless modified by omegap
and/or spacpf. To be considered “active,” these probability distributions must assign values to have an integral
probability magnitude >1.E-1S5. The medium mesh source is automatically constructed using a “nearest

. N . . . ) 4 o
neighbor” approach from the fine grid source definition. If the medium grid density is too sparse to resolve a
source distribution based on the fine grid, a warning message is issued.

* nsdef defines either a volumetric source (#/cm3/s) or a planar (#/cm?2/s) source. One of each is possible
in each coarse mesh cell. The number of entries in nsdef must equal the absolute value of nprtyp (see Block 4).

* nscmsh is a vector providing the reference location of sources (in order of source number) by coarse mesh
number. The number of entries in nscmsh must equal the absolute value of nprtyp (see Block 4).

* sref permits an arbitrary reference coordinate to be specified for each source, in order of source number.
The number of entries in nstef must equal the absolute value of nprtyp*3 (see Block 4).

* serg is a vector containing the energy group probability distribution for each source, in order of source
number. The number of entries in serg must equal the absolute value of nprtyp*ngroup (see Blocks I, 4).
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* smag defines the integral source magnitude (over all variables), in order of source number. The number of
entries in smag must equal the absolute value of nprtyp (see Block 4). Negative smag entries activate source
normalization for the source number.

* ssnrm is only required if there are nsdef entries equal to I, indicating planar sources. In that case, ssnrm entries
are required for all sources, although they are not used in the case where sources are volumetric. The ssnrm defines
a vector for each source pointing from the center of the coarse mesh where the source is located. PENTRAN
turns this vector into a unit vector, and then assigns a planar source to the surface of the 3-D coarse mesh boxoid
normal to the largest component of that unit vector. If the surface is on a shared interior problem boundary, a
similar planar source is implicitly defined for the adjacent mesh cell sharing the common boundary. Since only
one surface source can be defined for one coarse mesh, the coarse mesh containing the implicitly defined planar source cannot contain any
other planar source. This restriction was made due to memory limitations. Therefore, planar sources on interior
surfaces cannot use discontinuous meshing between coarse mesh cells on the common surface where the source
is located. Note that a spatial distribution can also be assigned to a volumetric source(s) to simulate a planar
source, although volumetric sources are assumed to be averaged at the cell center. The number of entries in

ssnrm must equal the absolute value of nprtyp*3 (see Block 4).

* Source particles from planar sources located at system boundaries entering into the system show up implicitly
in boundary currents of particle balances. Planar sources defined on interior surfaces will be indicated in the
system balances as “source particles.”

* omegap is an optional variable where the user can specify an angular probability distribution for any coarse
mesh source. If this variable is not defined for the source number, an equal (isotropic) angular probability is assigned for
the source. If this variable is defined for the source number, it must be specified to indicate the source number, group
number, angular octant number, and corresponding probability for each angle in the octant only for the sources that
require a non-uniform angular probability distribution. If the group number is entered as a negative group number, the angular
probability function is systematically applied to all energy groups. Each angular probability distribution is un-normalized.
Probabilities for the total number of angles in any specified octant are required, and it is the user’s
responsibility to supply the correct number. Probabilities for octants not defined are implicitly assumed to be
zero. A numbering pattern to guide probability assignment for sweep octants (and angles in each sweep octant)
is provided in the Appendix; a complete quadrature set can be printed showing octants, vectors, and all other
quadrature information using the PENQUAD utility if this information is required.

* spacpf is an optional variable where the user can specify a fine mesh spatial distribution to a any coarse mesh
source. If this variable is not defined for the source number, an equal spatial probability is assigned for the source. If this
variable is defined for the source number, it must be specified to indicate the source number, group number, number of
sequentially numbered meshes, and corresponding mesh spatial probabilities only for the sources that require a non-
uniform spatial probability distribution.

e [f the group number is entered as a negative group number in spacpf, the spatial probability function is systematimlly applied to all
energy groups. If a scalsf is declared, then this is used for all groups as well (see below). Probabilities for cells not
defined are assumed to be zero. Note that if an un-normalized distribution is specified (the default), a warning
message is reported.

* For a planar boundary source, each spacpf probability is still referenced by fine sequential cell number--
although probabilities in cells not on the coarse mesh boundary technically have no effect on the boundary cell
source probabilities. For clarity, the user should still include zeros for cell location probabilities not on the
boundary surface. Again, the sequential numbering scheme described in Block 2 for coarse meshes also applies
to fine (and medium) meshes contained within each coarse mesh. (Note that cell probabilities are
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automatically transferred to the implicitly defined planar source for the adjacent coarse mesh on the common
boundary--this is why discontinuous meshing on the boundary surface containing the source is not permitted).

* scalsf is an optional scale factor available for applying a scalar multiplier to any spatial probability
distribution. To be “active,” the magnitude of the scale factor must be greater than 1.E-50. The source
number, group number, and positive scale factor, in order, are required for each applicable source. Note: if the
Spacpf distribution applied to all groups (so that the group number is entered as a negative number), then the
scale factors defined in scalsf only need to be entered for group I, and will be automatically apllied throughout
all groups.
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Block 6: Boundary Conditions

Block 6 includes boundary conditions. All input fields are required and can be defined in any order. Six
possible parameters in this block include: ibback, ibfrnt, jbeast, jbwest, kbsout, kbnort.

Summary of Block 6 Inputs

Variable Decription Syntax Example

ibback Global “back” (-x) surface boundary condition ibback=type, group1_albedo, group2_albedo,...
ibfrnt Global “front” (+x) surface boundary condition ibfrnt=type, group I_albedo, group2_albedo,...

jbeast Global “east” (-y) surface boundary condition jbeast=type, groupI_albedo, group2_albedo,...

jbwest Global “west” (+y) surface boundary condition jbwest=type, group1_albedo, group2_albedo,...
kbsout Global “south” (-z) surface boundaty condition kbsout=type, group1_albedo, group2_albedo,...
kbnort Global “north” (+z) surface boundary condition kbnort=type, group1_albedo, group2_albedo,...

Termination of the Block witha T is required
Block 6 NOTES:

* Note the name of each boundary condition begins with the axis normal to each surface. Global boundary
condition names correspond to global system boundaries with a right handed 3-D Cartesian coordinate system,
“back” (-x), “front” (+x), “east” (-y), “west” (+y), “south” (-z), and “north” (+z).

* Boundary types (illustrated with ibback):

4+ ibback=0 is a vacuum boundary‘ No albedo factors are reguired‘
+ ibback=I, ... is an albedo boundary--ngroup albedo factors are required immediately following the type (the “I”).

For perfect spectrally reflective boundaries, all group albedo factors should be unity (1.0).
* Gray/White boundaries are not supported.

* Periodic boundaries are not supported.
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Block 7: Print Controls

Block 7 includes print controls. All input fields are optional and can be defined in any order. No specification
for any print controls sets maximum printing. . Nine possible parameters in this block include: nxspr, ngeopr,
nsumpr, meshpr, nfdump, nsrepr, nsdump, nmatpr, nadump

Summary of Block 7 Inputs

Variable Decription Syntax Example

nxspr Print cross section tables in output nxspr=0 (off) or =1 (on)

ngeopr Print a Mathematica™ readable geometty file ngeopr=0 (off) or =1 (on)

nsumpr Print local coarse mesh summary tables in output nsumpr=0 (off) or =1 (on)

meshpr Vector list of coarse mesh cells with formatted output meshpr=0 (none) or coarse_meshtt, ...
nfdump Binary data dump of mesh scalar fluxes/moments nfdump=0 (off Yor =(legord_dumped+1)
nsrepr Print source/distribution tables in output nsrepr=0 (off) or =1 (on), =2 (detailed)
nsdump Binary data dump of mesh scalar sources nsdump=0 (off) or =I (on)

nmatpr Print a material map in output files for local coarse cells nmatpr=0 (off) or =1 (on)

nadump Vector list of Binary data dump for angular fluxes nadump=coarse_mesh#, dump_type,

Termination of the Block witha T is required

Block 7 NOTES:

* Default settings are as follows: nxspr=1I, ngeopr=2, nsumpr=1, meshpr=0, nfdump=1, nsrcpr=1,
nsdump=1, nmatpr=1I, nadump=0. These settings are used if the parameter is not listed in the input deck.

* ngeopr can be set to values between [0,2], and prints increasingly detailed information about the problem
geometry. If ngeopr=1I, only coarse mesh geometry information is output; if ngeopr=2, then medium/fine
mesh details are printed.

* If no meshpr field is specified, full formatted output, incuding six-face partial and net currents, are output
for all coarse and medium (fine) meshes. A negative coarse mesh number supresses the mesh partial current
output, yielding formatted output of mesh scalar fluxes only. It is not recommended that medium (fine) mesh
data be specified for many coarse meshes here, since flux moments are accessible from binary files (see
nfdump), automatically managed using the PENDATA utility. Still, it is helpful to request data from a few
sample coarse meshes, since optical thickness, current balance, and other helpful data are printed into the
output file.

* The value of nfdump specifies the order of the angular flux moments to be dumped; setting this =1
indicates that only zeroth order moments (scalar fluxes) will be dumped. The maximum is (legord+1), which
would dump all moments through legord. If one desires only scalar fluxes from one portion of the problem, it
may be better to select the appropriate coarse mesh using meshpr, since nfdump yields (binary) moment data
for the entire problem phase space. Again, binary files are dumped by each processor only for the phase space
computed on that processor. Data from multiple processor files can be automatically gathered with the
PENDATA utﬂity‘

* Binary files generated by nfdump and nsdump have file input prefixes + “Lprocessortt’ and ‘.sprocessortt’,
respectively. Note that since medium (fine) mesh data are stored locally, the output on each processor number
is dependent on coarse mesh and group processor assignment.
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* The nadump switch permits the cell centered fine mesh angular fluxes from a particular coarse mesh to be
dumped to binary file format. Each coarse mesh number listed must be followed immediately by an angular flux
dump type, which specifies the hemisphere of angular fluxes to dump for each medium/fine mesh in the coarse

mesh, as follows:

> 1 indicates Type I: - x hemisphere, sweep octants I, 3, 6, 8
> 2 ..., Type 2: +x hemisphere, sweep octants 2, 4, 5, 7

> 3 ...... Type 3: -y hemisphere, sweep octants 1, 3, 5,7

> 4 ...... Type 4: +y hemisphere, sweep octants 2, 4, 6, 8

> 5...... Type S: -z hemisphere, sweep octants 1, 4, 5, 8

> 6 ..... . Type 6: +z hemisphere, sweep octants 2, 3, 6, 7
> 7 ..... . Type 7: complete sphere, sweep octants I through 8

* Binary files generated by nadump have file input prefixes + “aprocessor##. WARNING! Be very careful of
how much angular flux data you ask for with nadump--this requires a great deal of disk space! Since angular
fluxes can be dumped based on a coarse mesh, you may want to set up a “thin wall” coarse mesh to obtain a
hemisphere of exiting angular fluxes to use for coupling/input for another calculation. Data from multiple
processor files can be automatically gathered with the PENDATA utility.
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4. Appendix
4.1 Angular Quadrature Sets

>  Level symmetric quadrature Weights are given as point Weights; these initially sum to 1.0 for each octant. Following

initial assignment in PENTRAN, all weights are then multiplied by 1/8 for normalization on the unit sphere.

> The number of Qs per octant 1s (isn*(isn+2)/8), with (isn/2) distinct ['s, assuming isn is the discrete ordinates
quadrature order.

» Point Weights derived from level Weights for SI4 and above can vary due to more than one positive real root
possible to satisfy the criteria for level symmetry; therefore, point weights derived here for S14 and above may or
may not differ from those found elsewhere.

> Al quadratures in PENIRAN were derived with a numerical precision of at least I.0D-15. A more detailed
PENTRAN quadrature listing can be obtained using the PENQUAD utility.

Example: S6 Level Symmetric PENTRAN Q Sampling order:
(1>0,n>0, £>0)

3 3
1

1
2 2 2 3
121 456
H n M n
6*8/8 = 6 Qs per octant 6/2 = 3 unique W's

PENTRAN Assignment of S6 Q's:
Q# pPp=pm  N=pm & pm  w=wm

I 1 1 3 1
2 2 1 2 2
3 1 2 2 2
4 3 1 I 1
5 2 2 I 2
6 1 3 I 1
[ S6 Level Symmetric Quadrature
S6 & 13
(+ + +) Cctant 1 1
m Level Di agram 22 23
(Sweep 2) 121 456
L n B N
wm(1)=0.1761261308633819D0 wm(2)=0.1572072024699513D0
Hm(1)=0.2666354015167032D0 Hm(2)=0.6815077265365472D0

Hm(3)=0.9261809355174899D0
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[ S2 Level Symmetric Quadrature

S2
(+ + +) Cctant

m Level Di agram
(Sweep 2)
wm(1)=1.D0
Hm(1)=0.5773502691896257D0
O S4 Level Symmetric Quadrature

4
(+ + +) Cctant
m Level Diagram

(Sweep 2)

wm(1)=0.3333333333333333D0
Hm(1)=0.3500211745815406D0

U S8 Level Symmetric Quadrature

[V al |
[ al |

H

[l as |
¥ als |

1 23

S8 ¢ 13
(+ + +) Cctant 1 1
m Level Di agram 2 2 2 3
(Sweep 2) 2 3 2 4 5 6
1 2 2 1 7 8 9 10
u n u n
wm(1)=0.1209876543209866D0 wm(2)=0.0907407407407413D0
wm(3)=0.0925925925925926D0
HUm(1)=0.2182178902359909D0 HUm(2)=0.5773502691896258D0
Mm(3)=0.7867957924694435D0 Mm(4)=0.9511897312113425D0
[ SIO Level Symmetric Quadrature
S10 & &
(+ + +) Cctant 1 1
m Level Diagram 2 2 2 3
(Sweep 2) 4 3 4 5 6
2 4 4 2 7 8 9 10
1 2 3 2 1 11 12 13 14 15
u n u n

wm(1)=0.08930314798435302D0
wm(3)=0.04504376743640288D0

Hm(1)=0.1893213264780056D0
Hm(3)=0.6943188875943850D0
Hm(5)=0.9634909811104704D0

wm(2)=0.07252915171236890D0
wm(4)=0.05392811448783971D0

Hm(2)=0.5088817555826185D0
Hm(4)=0.8397599622366860D0
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[ SI2 Level Symmetric Quadrature

S12 &

(+ + +) Cctant 1
m Level Diagram 2

(Sweep 2) 3 4
3 b5

2 4 b
1 2 3

wm(1)=0.07076258997008411D0
wm(3)=0.03733767375882513D0
wm(5)=0.02585129165575492D0

Mm(1)=0.1672126528227026D0
Hm(3)=0.6280190966421315D0
Mm(5)=0.8722705430257244D0

U ST4 Level Symmetric Quadrature

S14 ¢

(+ + +) Cctant 1
m Level Di agram 2 2

(Sweep 2) 3 5
4 6 6

3 6 7
2 5 6 6

1 2 3 4

wm(1)=0.05799704089709301D0
wm(3)=0.02214970797116879D0
wm(5)=0.03938673868440395D0
wm(7)=0.01213253759421592D0

Hm(1)=0.1519858614611801D0
Um(3)=0.5773502691896257D0
Hm(5)=0.8022262552313840D0
Hm(7)=0.9766271529257242D0

3

1
2 3
4 5 6
7 8 9 10
2 11 12 13 14 15
1 16 17 18 19 20 21

M n

wm(2)=0.05588110156489365D0
wm(4)=0.05028190106005664D0

Hm(2)=0.4595476346425931D0
Hm(4)=0.7600210148336660D0
Hm(6)=0.9716377192513620D0

§
1
2 3
4 5 6
7 8 9 10
11 12 13 14 15

2 16 17 18 19 20 21
1 22 23 24 25 26 27 28

i y

wm(2)=0.04890079763671375D0
wm(4)=0.04070085313525794D0
wm(6)=0.02455175510137073D0

Mm(2)=0.4221569823048237D0
Hm(4)=0.6988920867758852D0
Mm(6)=0.8936910988743190D0
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[ SI6 Level Symmetric Quadrature

S16 ¢ 13
(+ + +) Cctant 1 1
m Level Di agram 2 2 2 3
(Sweep 2) 5 3 4 5 6
6 6 4 7 8 9 10
4 7 8 7 4 11 12 13 14 15
3 6 8 8 6 3 16 17 18 19 20 21
2 5 6 7 6 5 2 22 23 24 25 26 27 28
1 2 3 4 4 3 2 1 29 30 31 32 33 34 35 36
u n u n

wm(1)=0.04898723915796233D0
wm(3)=0.02244759769020243D0
wm(5)=0.03361864689378468D0
wm(7)=0.03692573110461228D0

wm(2)=0.04132959786990422D0
wm(4)=0.02440567883044038D0
wm(6)=0.01567390172962426D0
wm(8)=0.00608816393663137D0

HUm(2)=0.3922892614447836D0
Hm(4)=0.6504264506287802D0
Hm(6)=0.8319965569100706D0
Hm(8)=0.9805008790117792D0

Hm(1)=0.1389568750676416D0
Hm(3)=0.5370965613008739D0
Um(5)=0.7467505736146995D0
Hm(7)=0.9092855009437586D0

U SI8 Level Symmetric Quadrature

S18 & 13
(+ + +) Cctant 1 1
m Level Di agram 2 2 2 3
(Sweep 2) 3 6 4 5 6
4 7 7 4 7 8 9 10
5 8 9 5 11 12 13 14 15

16 17 18 19 20 21
22 23 24 25 26 27 28
2 29 30 31 32 33 34 35 36
1 37 38 39 40 41 42 43 44 45

n ¢ n

wm(1)=0.04226464488217149D0
wm(3)=0.00669073200689742D0
wm(5)=0.00425499717425421D0
wm(7)=0.00923962764409376D0
wm(9)=0.01365760464592128D0

wm(2)=0.03761274738552265D0
wm(4)=0.03919193289514417D0
wm(6)=0.04236619014295116D0
wm(8)=0.01566475086155585D0
wm(10)=0.01399031490160748D0

Hm(1)=0.1293445045421084D0
Hm(3)=0.5041651517249193D0
Hm(5)=0.7011668842525139D0
Hm(7)=0.8538662066922110D0
Hm(9)=0.9831276612370913D0

Hm(2)=0.3680438160525554D0
Hm(4)=0.6106625499349821D0
Um(6)=0.7812561994964660D0
Hm(8)=0.9207680210618902D0
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O S20 Level Symmetric Quadrature

S20 & 13
(+ + +) Cctant 1 1
m Level Diagram 2 2 2 3
(Sweep 2) 3 6 3 4 5 6
4 7 7 4 7 8 9 10
5 8 9 8 5 11 12 13 14 15
9 10 10 9 5 16 17 18 19 20 21
4 8 10 11 10 8 4 22 23 24 25 26 27 28
3 9 10 10 9 7 3 29 30 31 32 33 34 35 36
2 6 7 8 9 8 7 6 2 37 38 39 40 41 42 43 44 45
1 2 4 5 5 4 3 2 1 46 47 48 49 50 51 52 53 54 55
u n u n
wm(1)=0.03702104906169415D0 wm(2)=0.03328421653654838D0
wm(3)=0.01396701489265008D0 wm(4)=0.02908513232048754D0
wm(5)=0.00623193004605474D0 wm(6)=0.02621667000444185D0
wm(7)=0.00228753938881476D0 wm(8)=0.03639912902091424D0
wm(9)=0.00899059601452543D0 wm(10)=0.00297606912156027D0
wm(11)=0.01095707875225638D0
Hm(1)=0.1206033430392633D0 Hm(2)=0.3475742923164429D0
Mm(3)=0.4765192661438829D0 Mm(4)=0.5773502691896257D0
Hm(5)=0.6630204036531319D0 Hm(6)=0.7388225619100911D0
Hm(7)=0.8075404016607585D0 Hm(8)=0.8708525837599884D0
Hm(9)=0.9298639389547678D0 HUm(10)=0.9853474855580162D0
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4.2 Angular Octant Sweeping Assignments

[ Octant numbers are assigned on the unit sphere with the signs given for each direction cosine. Also listed are the
starting corners where sweeping originates in a Cartesian system. For a more detailed quadrature list, use the

PENQUAD utility.

Summary of PENTRAN GENERAL OCTANT Sweeping Assignments

Sweep M n & Start Sweep M n & Start
1 - - - FVN 2 + + +  BES
3 - - +  FWS 4 + + - BEN
5 + - - BWN 6 - + + FES
7 + - +  BWS 8 - + - FEN

B=Back(-x) F=Front(+x) E=East(-y) W=West(+y) S=South(-z) N=North(+z)
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4.3 PENQUAD: Supplemental Angular Data

In the event the user requires direct access to all of the angular quadrature data for a particular quadrature
set, or would like to print out the entire quadrature set for assigning an angular source distribution in
PENTRAN, the PENQUAD utility has been developed. This utility outputs all of the quadrature data for any
level-symmetric set in PENTRAN from $n=S; to Sz, including all evaluated Legendre polynomials through P,
depending on the user-specified options. A sample output from the PENQUAD utility for S, quadrature and

P, Legendre functions is given below (“aphi” is the azimuthal angle in radians):

PENQUAD S 4 Level Symmetric Quadrature in PENTRAN 4. xxbeta with Pl Legendre
i Sweep Orega w m eta aphi
1 1 1 4.16667E-02 -3.50021E-01 -3.50021E-01 -8. 68890E 01 -1.95375E+00
P(0)= 1. 00000E+00 P(1)=-3.50021E-01
P(1, 1) * COS( 1* aphi 3. 50021E- 01
P(1,1)*SI N(1*aph 8. 68890E- 01
i Sweep Onega w m eta Xi aphi
2 1 2 4.16667E-02 -8.68890E-01 -3.50021E-01 -3.50021E-01 -2.35619E+00
P(0)= 1. 00000E+00 P(1)=-8.68890E-01
P(1, 1) *COS( 1* aphi 3.50021E-01
P(1,1)*SI N(l*aphl 3. 50021E- 01
S\Neep Orega w m eta Xi aphi
3 3 4.16667E-02 -3.50021E-01 -8.68890E-01 -3.50021E-01 - 2. 75864E+00
P( 0)- 1. 00000E+00 P(1)=-3.50021E-01
P(1, 1) * COS( 1* aphi 8. 68890E- 01
P(1, 1) *SI N( 1* aphi 3.50021E-01
Sweep Orega w m eta Xi aphi
4 2 1 4.16667E-02 3.50021E-01 3.50021E-01 8.68890E-01 1.18785E+00
P(0)= 1. 00000E+00 P(1)= 3.50021E-01
P(1, 1) *COS( 1*aphi ) =- 3. 50021E- 01
P(1, 1) *SI N(1* aphi ) =- 8. 68890E- 01
i Sweep Orega w m eta Xi aphi
5 2 2 4.16667E-02 8.68890E-01 3.50021E-01 3.50021E-01 7.85398E-01
P(0)= 1. 00000E+00 P(1)= 8.68890E-01
P(1, 1) *COS( 1* aphi ) =- 3. 50021E- 01
P(1, 1) *SI N(1*aphi ) =- 3. 50021E- 01
i Sweep Onega w m eta Xi aphi
6 2 3 4.16667E-02 3.50021E-01 8.68890E-01 3.50021E-01 3.82950E-01
3. 50021E- 01
- 8. 68890E- 01
-3.50021E-01
m eta Xi aphi
3.50021E- 01 -3.50021E-01 8.68890E-01 1.95375E+00
-3.50021E-01
3.
-8.
8
- 8.
3.
-3.
3
-3.
8.
-3.
3
3.
-3.
8.
8
8.
-3.
3.
3
3.
-8.
3.
3
3.
3.

)
)
)
2
)
)
)
2
)
)
)
2
)
)
)
2
)
)
)
2
P(0)= 1. 00000E+00 P( 1)
P(1, 1) *COS( 1*aphi )
P(1,1)*SI N(1*aphi )
i S\Neep Orega w
7 1 4.16667E-02
P( 0) = 1. 00000E+00 P(1)
P(1, 1) *COS( 1* aphi ) 50021E- 01
) 68890E- 01
m eta Xi aphi
2 -8.68890E-01 -3.50021E-01 3.50021E-01 2.35619E+00
) 68890E- 01
) 50021E- 01
) 50021E- 01
m eta Xi aphi
2 -3.50021E-01 -8.68890E-01 3.50021E-01 2.75864E+00
) 50021E- 01
) 68890E- 01
) 50021E- 01
m eta Xi aphi
2 3.50021E-01 3.50021E-01 -8.68890E-01 -1.18785E+00
) 50021E- 01
) 50021E- 01
) 68890E- 01
m eta Xi aphi
2 8.68890E-01 3.50021E-01 -3.50021E-01 -7.85398E-01
) 68890E- 01
) 50021E- 01
) 50021E- 01
m eta Xi aphi
2 3.50021E-01 8.68890E-01 -3.50021E-01 -3.82950E-01
) 50021E- 01
) 68890E- 01
) 50021E- 01
m eta Xi aphi
2 3.50021E-01 -3.50021E-01 -8.68890E-01 -1.95375E+00
) 50021E- 01
) 50021E- 01

P(1,1)*SI N(1*aph|

i Sweep Onega w
8 3 2 4.16667E-0
P(0)= 1. 00000E+00 P(1
P(1, 1) *COS( 1* aphi
P(1, 1) *SI N( 1* aphi

i S\Neep Orega w
9 3 4.16667E-0
P( 0)— 1. 00000E+00 P(1
P(1, 1) * COS( 1* aphi
P(1, 1) *SI N( 1* aphi

i Sweep Onega w
10 4 1 4.16667E-0
P(0)= 1. 00000E+00 P(1
P(1, 1) *COS( 1* aphi
P(1, 1) *SI N( 1* aphi

i Sweep Orega w
11 4 2 4.16667E-0
P(0)= 1. 00000E+00 P(1
P(1, 1) * COS( 1* aphi
P(1, 1) *SI N( 1* aphi

i Sweep Onega w
12 4 3 4.16667E-0
P(0)= 1. 00000E+00 P(1
P(1, 1) *COS( 1* aphi
P(1, 1) *SI N( 1* aphi

i S\Neep Orega w
13 1 4.16667E-0
P( 0)— 1. 00000E+00 P(1
P(1, 1) * COS( 1* aphi
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P(1, 1) *SI N( 1* aphi
S\Neep Orega w
2 4.16667E-0
P( 0)— 1. 00000E+00 P(1
P(1, 1) * COS( 1* aphi
P(1, 1) *SI N( 1* aphi
Sweep Orega w
5 3 4.16667E-0
P(0)= 1. 00000E+00 P(1
P(1, 1) *COS( 1* aphi
P(1, 1) *SI N( 1* aphi
S\Neep Orega w
1 4.16667E-0
P( 0)- 1. 00000E+00 P(1
P(1, 1) * COS( 1* aphi
P(1, 1) *SI N( 1* aphi
Sweep Orega w
6 2 4.16667E-0
P(0)= 1. 00000E+00 P(1
P(1, 1) *COS( 1* aphi
P(1, 1) *SI N( 1* aphi
Sweep Orega w
6 3 4.16667E-0
P(0)= 1. 00000E+00 P(1
P(1, 1) * COS( 1* aphi
P(1, 1) *SI N( 1* aphi
Sweep Orega w
7 1 4.16667E-0
P(0)= 1. 00000E+00 P(1
P(1, 1) *COS( 1* aphi
P(1, 1) *SI N( 1* aphi
S\Neep Orega w
2 4.16667E-0
P( 0)— 1. 00000E+00 P(1
P(1, 1) * COS( 1* aphi
P(1, 1) *SI N( 1* aphi
Sweep Orega w
7 3 4.16667E-0
P(0)= 1. 00000E+00 P(1
P(1, 1) *COS( 1* aphi
P(1, 1) *SI N( 1* aphi
S\Neep Orega w
1 4.16667E-0
P( 0)— 1. 00000E+00 P(1
P(1, 1) * COS( 1* aphi
P(1, 1) *SI N( 1* aphi
Sweep Orega w
8 2 4.16667E-0
P(0)= 1. 00000E+00 P(1
P(1, 1) *COS( 1* aphi
P(1, 1) *SI N( 1* aphi
Sweep Orega w
8 3 4.16667E-0
P(0)= 1. 00000E+00 P(1
P(1, 1) * COS( 1* aphi
P(1, 1) *SI N(1* aphi

)=

e N e N e N e N e N e N e N e N e N e N e

. 68890E- 01

nm

. 68890E- 01

. 68890E- 01
50021E- 01
.50021E-01
mu

.50021E-01

. 50021E-01

. 68890E- 01

50021E- 01
nmu

. 50021E-01

.50021E-01
.50021E-01
. 68890E- 01
mu

. 68890E- 01

. 68890E- 01
. 50021E-01
. 50021E-01
nmu

. 50021E-01

.50021E-01
. 68890E- 01
.50021E-01
mu

.50021E-01

. 50021E-01

. 50021E- 01

. 68890E- 01
nmu

. 68890E- 01

. 68890E- 01
50021E- 01
.50021E-01
mu

.50021E-01

. 50021E-01

. 68890E- 01

. 50021E-01
nmu

. 50021E-01

. 50021E-01
. 50021E-01

. 68890E- 01

mu

. 68890E- 01

. 68890E- 01
. 50021E-01

. 50021E- 01

nm

. 50021E-01

. 50021E-01
. 68890E- 01

. 50021E- 01

eta

. 50021E-01 -3

eta

. 68890E-01 -3.

eta

.50021E-01 8.

eta

.50021E-01 3.

eta

.68890E-01 3

eta

.50021E-01 8.

eta

.50021E-01 3

eta

. 68890E-01 3

eta

. 50021E-01 -8.

eta

.50021E-01 -3.

eta

. 68890E-01 -3

X1
50021E-01 -2.

X1
50021E-01 -2.

X1
68890E-01 1.

X1
50021E-01 7.

X1
50021E-01 3

X1
68890E-01 1.

X1
50021E-01 2.

X1
50021E-01 2.

X1
68890E-01 -1.

X1
50021E-01 -7.

X1
50021E-01 -3

aphi
35619E+00

aphi
75864E+00

aphi
18785E+00

aphi
85398E- 01

aphi
82950E- 01

aphi
95375E+00

aphi
35619E+00

aphi
75864E+00

aphi
18785E+00

aphi
85398E- 01

aphi
82950E- 01
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4.4 PENDATA: Automated Post-Processing of Massively Parallel Data

The PENDATA utility has been developed to permit the user to gather and have selective access to any
data field generated by a parallel run. In a simple sense, the PENDATA utility removes most of the pain of
handling large, massively parallel binary and ASCII output data files from PENTRAN. PENDATA can
automatically process all output files or a single output file. Fully automated data processing progresses by
reading parallel storage information from the decomposition mapping table located at the end of any logfile
from a parallel run. Automated or single file selection and gather of any output data, including Coarse Mesh
Summary data (from ASCII output files) and any binary stored output data, can be performed using
PENDATA. The opening screen of PENDATA offers the following data manipulation choices, where the user

must input an option number [1,8]:

PENDATA 3.4 SI NGLE PRECI SI ON
Dat a Post - Processor for PENTRAN Qutputs
Supporting PENTRAN Version 8. xx
G Sjoden
A. Haghi ghat

Penn State Transport Theory G oup

Departnent of Nucl ear Engi neering

The Pennsylvania State University
Novenber 1999

SCALAR FLUX Opti ons:
. Get COARSE MESH SUMVARY Data froma single OJUTPUT FILE
: Get Binary FLUX MOVENT Data froma single OUTPUT FILE
: Get Binary SCALAR SOURCE Data from a single QUTPUT FI LE
: Get Logfile & AutoMap PARALLEL COARSE MESH SUMVARY Dat a
: Get Logfile & Autovap PARALLEL Binary FLUX MOVENT Data
: Get Logfile & AutoMap PARALLEL Bi nary SOURCE Dat a

A~~~
DO WN -
T —

ANGULAR FLUX Opti ons:
(7): Get Binary ANGULAR FLUX Data froma single OUTPUT FILE
(8): Get Logfile & Autoivap PARALLEL Binary ANGULAR FLUX Dat a

A simple, self explanatory menu format follows each option, showing what data fields can be selectively
stripped and automatically gathered. If an automated processing is selected, at least one logfile from a processor participating in
the parallel run must be located with all other output files in a common directory. PENDATA will prompt for all required
user input, and then report progress as output files are scanned, data is stripped, and collection is made in

ASCII table (column) format. The user has freedom to name the output files in single file processing.
Automated data output files processed and stored by PENDATA based on the post-processing choice number:

> Option 4: fileprefix.crs Option S: fileprefix.flx Option 6: fileprefix.stc Option 8: fileprefix.ang

Note: In binary flux moment files (Options (2) or (5)), moments are reported by PENDATA beginning

with a column entitled “flux moments,” with flux moments written in columns in the order of scalar, all
- - - 12 2
cosine, and all sine angular moments. Columns therefore include ¢, (pl,qoél (pél,(pz ,(pcz,gocz,qoéz,gosz, etc,

as given in equations (2.19) to (2.21) etc. The angular Legendre terms for any quadrature set, if required, can
be obtained directly from the PENQUAD utility. Note that source files only yield scalar sources, and use of a
single precision PENTRAN version requires a single precision PENDATA version for binary data compatability.
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4.5 Problem Deck Example: A Simple 3-D Box-in-a-Box

A simple example is always beneficial to describe a
code input format. PENTRAN has many features and
options; in addition, the added complexity of potential
parallelism in any one or combinations of all three
dimensions (angles, energy groups, and spatial (coarse
mesh) cells) forces the user to consider issues that are
typically not considered with conventional transport
codes.

For completeness, we mention here that the PENTRAN
Code System encomapsses several codes that serve as very
useful tools for the user in operating PENTRAN. The
PENTRAN Code System is composed of the following

individual codes:

PENMSH --allows the user to automatically design

a mesh in 2-D z-plane “slices” called “z-levels” so as to

automatically match material boundaries to user
defined grid densitities in 3-D, and creates a postscript file of the z-level image.

PENDRW -- renders a two-dimensional z-level image on the PC. A version of PENDRW is already
integrated into PENMSH to output a Post-Script image

PENINP --uses the mesh definition files generated by PENMSH to render an input deck to allow the user
to run the problem in parallel on a set of processors.

PENTRAN — Parallel Environment Neutral Particle Transport Code

PENDATA —A data sorting/handling tool that actively determines the location of a binary file where your
information is stored

PENPRL — Performs 3-D interpolation of non-contiguous data; other uses.
Each of these can be obtained through H&S Advanced Computing Technologies.

The “Box-in-a-Box” is given as a simple example of how an input deck might be cast for a problem. This
input deck was generated using the PENMSH and PENINP tools. There is a uniform source in group I for
this three group problem. The geometry is depicted in the figure at right. There are 27 coarse meshes, each
containing a 4x4x4 fine grid structure. The problem was run on a single machine for clarity and compact
presentation. Note that PENTRAN will echo the input deck as loaded on processor I (the “principal” or
“root” processor) as part of the output file. Note: on one processor, about 15 Mb is required. This number
drops proportional to the number of processors added in parallel to accomplish the calculation.
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The results of this run are provided below (run on a single node K6-2 PC at 380 MHz):

3-D Transport Code PENTRAN
Paral l el Environnent Neutral particle
Transport in Cartesian Geonetry
with MPI/ANSI FORTRAN- 90

Versi on 9. 00R

Princi pal Devel opers:
G Sjoden
A. Haghi ghat

W ndow/ Restart Devel oper:
V. Kucukboyaci

Penn State Transport Theory G oup

Depart ment of Nucl ear Engi neering

The Pennsylvania State University
April 2000

Probl em I nput Deck (As Read): Mermory Requi r ed:
I nput Deck file: boxx.ref

PENTRAN CCDE PARAMETERS FOR THI S PROBLEM
mMaxXmem  MAxpcs, Mmaxgcm  maxxsg

15 1 27 0
maxcnct, naxcrs, nmaxmmt, nmaxnmed, mxfnc, nmaxfin
27 3 64 12 64 12
maxgrp, maxglc, naxswp, nmaxqdm nmaxnmat, nmexleg
8 10 2 1
maxsrc, maxslc, maxcnr, nmaxlin, maxarr, nctlim
1 1 27 320 204 133
————————————————— Start ProblemDeck-------------------
boxx
1 Boxx: Box-in-a-box Sinple Problem
2
3
4 Gl QR &3
5 1. DO 0.0 0.0 bin prob
6
7
8
9
0
/
A I BLOCK | (GENERAL PROBLEM info.)-----------
/
ngeonm=3d
nodadj =0
ngr oup=3
i sn=8
nmat | =2
i xcrs=3
jycrs=3
kzcrs=3
| odbal =0
ti ncut =0.
t ol ngd=. 200
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decmpv=1 0 0 T

xnmesh=. 00 8. 00 16. 00
fine nmesh distribution for
i xfine=4 4 4

4 4 4

4 4 4

fine nmesh distribution for

4 4 4
4 4 4
4 4 4

fine nmesh distribution for

4 4 4
4 4 4
4 4 4
medi um nesh di stribution
i xmed=2 2 2
2 2 2
2 2 2

nmedi um nesh di stribution

2 2 2
2 2 2
2 2 2

medi um nesh di stri bution

2 2 2
2 2 2
2 2 2

coarse-nesh y-position

ymesh=. 00 8. 00 16. 00

nunmber of fine-nesh al ong
jyfine=4 4 4
4 4 4
4 4 4
nunmber of fine-nesh al ong
4 4 4
4 4 4
4 4 4

nunmber of fine-nesh al ong

24. 00

zl ev= 1

zl ev= 2

zl ev= 3

for zlev=

for zlev=

for zl ev=

24.00

y for zlev=

y for zlev=

y for zlev=
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4 4 4

4 4 4

4 4 4

nunber of nediummesh along y for zlev= 1
j ymed=2 2 2

2 2 2

2 2 2

nunber of nediummesh along y for zlev= 2

2 2 2
2 2 2
2 2 2

nunber of nediumnmesh along y for zlev= 3

2 2 2
2 2 2
2 2 2

z coarse-mesh boundari es
zmesh=. 00 8.00 16.00 24.00

nunber of fine-nesh along z, per coarse-nesh for z-level= 1
kzfine=4 4 4

4 4 4
4 4 4

nunber of fine-nesh along z, per coarse-nesh for z-level= 2
4 4 4

4 4 4
4 4 4

nunmber of fine-nesh along z, per coarse-nesh for z-level= 3
4 4 4
4 4 4
4 4 4
nunber of nedi um nmesh along z, per coarse-nmesh for z-level= 1
kznmed=2 2 2
2 2 2
2 2 2

nunber of nedi um mesh along z, per coarse-nmesh for z-level= 2

NN N
NN N
NN N

nunber of nedi um nmesh along z, per coarse-nmesh for z-level= 3

NN N
NN N
NN N
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material distribution for

nmat t p=1
4R1 34

3Q16
3Q16
3Q16
3Q16
3Q16
3Q16
3Q16
3Q16

mat eri al distribution

nmat t p=10
4R1 34

nmat t p=11
4R1 34

nmatt p=12
4R1 34

nmat t p=14
4R2 34
nmat t p=15
41R1 34

4RL 34

3Q16
3Q16
3Q16
3Q16
3Q16
3Q16
3Q16
3Q16

mat erial distribution

nmat t p=19
4R1 3

nmat t p=21
4R1 34

nmat t p=22
4R1 34

nmat t p=24
4R1 34

nmat t p=25
4R1 34

nmat t p=26
4R1 34

3Q16
3Q16
3Q16
3Q16
3Q16
3Q16
3Q16
3Q16

for

for

zl ev=

zl ev=

zl ev=

1

2

3
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nmat t p=27
4R1 2
4R1 3Q16
flxini=27R1. 0
mat hmg=27R0

T

BLOCK 111

l'i b=fil e:boxx.xs

| egord=1
nxt yp=0
i hme8
i ht=3
i hng=0
chi g=6R1. 0
nxcmt =1 T

i hs=6

ncoupl =1
nprtyp=1

nr dbl k=0

tol i n=. 000500
t ol out =. 000500
dt wrxw=. 96
maxi t r =50
nmet hi t =2

Starting or selected differencing schene,

ndnmet h=2

2 2
2 2 2
2 2 2

Starting or selected differencing schene,

NN N
NN N
NN N

Starting or selected differencing schene,

serg=. 1000E+01
. 0000E+00
. 0000E+00
smag=1R1. 0
spacpf=1 -1
. 10000E+01
. 10000E+01
. 10000E+01
. 10000E+01

| egoxs=1

64

. 10000E+01
. 10000E+01
. 10000E+01
. 10000E+01

( CROSS SECTI ONS)

. 10000E+01
. 10000E+01
. 10000E+01
. 10000E+01

for

for

for

. 10000E+01
. 10000E+01
. 10000E+01
. 10000E+01

each coarse-nmesh, for

for

each coarse-nesh

each coarse-nmesh, for

Appendix

z-1 evel

z-l evel
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. 10000E+01 . 10000E+01 .10000E+01 . 10000E+01
. 10000E+01 . 10000E+01 .10000E+01 . 10000E+01
. 10000E+01 . 10000E+01 .10000E+01 . 10000E+01
. 10000E+01 . 10000E+01 .10000E+01 . 10000E+01
. 10000E+01 . 10000E+01 .10000E+01 . 10000E+01
. 10000E+01 . 10000E+01 .10000E+01 . 10000E+01
. 10000E+01 . 10000E+01 .10000E+01 . 10000E+01
. 10000E+01 . 10000E+01 .10000E+01 . 10000E+01
. 10000E+01 . 10000E+01 .10000E+01 . 10000E+01
. 10000E+01 . 10000E+01 .10000E+01 . 10000E+01
. 10000E+01 . 10000E+01 .10000E+01 . 10000E+01
. 10000E+01 . 10000E+01 .10000E+01 .10000E+01 T
/
I R BLOCK VI (BOUNDARY CONDI TIONS) ---------
/
[ var type G oup al bedos
i bback=0
i bf rnt=0
j beast =0
j bwest =0
kbsout =0
kbnort =0 T
/
I BLOCK VII (PRINTING CONDITIONS) ---------

nxspr=1 nmat pr=0 ngeopr=1 nsrcpr=0 nsunpr=1
meshpr =0
nf dump=1 nsdunp=0 nadunp=0 T

Fi xed Source Problemwith 1 Fixed Sources Present
Pr obl em Qut put/ Resul ts:

Run Started: 05/06/2000 05:34:04

Results file: boxx.1

Header and Title Cards:

boxx

1 Boxx: Box-in-a-box Sinple Problem
Gl @ &3
1. DO 0.0 0.0 bin prob

QUOWONOUITR,WN

GLOBAL PROCESSOR/ PROBLEM | NFORVATI ON

Deconposi ti on Wi ght Vector (decnpv)**

Angul ar: 1.00
G oup: .00
Spati al : .00

Deconposition Priority Enphasis: Angul ar
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0 Uni que Comuni cators Built on proc

(**NEGATI VE Val ues LOCK-1N the total
processors for the respective deconposition;
PCSI Tl VE Val ues WEI GHT Paral | el

BLOCK deconposi tion;

PARALLEL VI RTUAL 3-D TOPOLOGY:

numnber

1.

of scal ed

ZERO Val ues
Scal i ng)

1 TOTAL Processor(Ss)

Deconposi ti on Tot al Processors Local |l y Tot al
Vari abl e Processed Al'l ocated Processed Percentage
Coarse Cells 27 1 27 100.
Energy G oups 3 1 3 100.
Di recti ons Orega 80 1 80 100.
(Ang Sweep Cctants) 8 1 8 100.
(Onegas/ Cct ant) 10 1 10 100.
Automati ¢ Load Bal ance Strategy: NONE (Sequential Assignhnent)
Red- Bl ack Col oring Strategy: NONE (Local Sequential Assignnent)
Parall el Max/Mn Load Ratio in Problem
Spatial Coarse Cells: 1.0000E+00
Energy G oups: 1. 0000E+00
Angul ar Sweep Cctants: 1.0000E+00
Onegas/ Cctant: 1. 0000E+00
LOCAL PROCESSOR | NFORMATI ON
Coarse Cells on Processor 1:
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27
Energy G oups on Processor 1:
1 2 3
Angul ar Sweeps on Processor 1:
1 5 3 7 8 4 6 2
Sweep Oregas on Processor 1.
1 2 3 4 5 6 7 8 9 10
(See Logfile for Deconposition Mapping)
Ceonetry: 3d
S8 3D Level Symetric Angul ar Quadrature
Number of Onegas per Cctant : 10
ABS M nimum Direction Cosine : .218217900000000
(+,+,+) Direction Cosines(in sanpling order):
Onega w (wei ght) mu (x-axis) eta (y-axis) Xi (z-axis)
1 . 015123460000000 .218217900000000 .218217900000000 .951189800000000
2 . 011342590000000 .577350300000000 .218217900000000 . 786795800000000
3 . 011342590000000 .218217900000000 .577350300000000 . 786795800000000
4 . 011342590000000 . 786795800000000 .218217900000000 .577350300000000
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5 . 011574070000000 .577350300000000 .577350300000000 .577350300000000
6 . 011342590000000 .218217900000000 . 786795800000000 .577350300000000
7 . 015123460000000 .951189800000000 .218217900000000 .218217900000000
8 . 011342590000000 . 786795800000000 .577350300000000 .218217900000000
9 . 011342590000000 .577350300000000 . 786795800000000 .218217900000000
10 . 015123460000000 .218217900000000 . 951189800000000 .218217900000000
Onega Sanpling O der:
S8 Xi
(+ + +) Cctant 1
m Level Di agram 2 3
(Sweep 2) 4 5 6
7 8 9 10
nu eta
GENERAL OCTANT Sweepi ng Assi gnnents
Sweep mu eta Xi Start Sweep mu eta Xi Start
1 - - - FWN 2 + + + BES
3 - - + FWs 4 + + - BEN
5 + - - BWN 6 - + + FES
7 + - + BWS 8 - + - FEN

B=Back(-x) F=Front(+x) E=East(-y) WWest (+y) S=Sout h(-z) N=North(+z)

3 GROUP/ CRCSS SECTI ON I nformation
Cross Sections: P1 ORDER USED, P1 read in

Length of xsec table each Pn : (i

Total Cross Section position: (iht)

I n-group Scatter position: (i

Last neutron (n,Q) position: (i
***WARNI NG Upscatter xsecs

Qo wom

Cross sections read fromfile: boxx.xs
Cross Section Type: (nxtyp) O
Fornmat: STANDARD with (21 +1) nultiplied after READ
Print Switch: (nxspr) 1

Mat eri al 1 Cross Sections: Pl order used, Pl read in

Mat eri al 1 Principal Goup Xsecs/Goup Chi

Gp siga g nusi gf g sigt g chi_g
1 7.50000E-02 0.00000E+00 1.25000E-01 1. 00000E+00
2 1.06700E-01 0.00000E+00 1.66700E-01 1. 00000E+00
3 1.00000E-01 0.00000E+00 2.50000E-01 1. 00000E+00

Mat eri al 1 Scattering Mnents

Gp Pn sig G >g, sig_(G1)->g...
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1 0 0.00000E+00 0.00000E+00 1.50000E-02

2 0 5.00000E-02 3.00000E-02 1.50000E-02

3 0 1.00000E-01 3.00000E-02 2.00000E-02

1 1 0.00000E+00 0.00000E+00 3.00000E-05

2 1 1.50000E-04 0.00000E+00 3. 00000E-05

3 1 0.00000E+00 3.00000E-05 3.00000E-05
***WARNI NG Materi al 1

GROUP 1 Absorption+Scatter Cross Sections DO NOT sumto the total
Mat eri al 2 Cross Sections: Pl order used, Pl read in
Mat eri al 2 Principal Goup Xsecs/ Goup Chi
Gp siga g nusi gf g sigt g chi_g
1 7.50000E-03 0.00000E+00 1.25000E-02 1. 00000E+00
2 1.06700E-02 0.00000E+00 1.66700E-02 1. 00000E+00
3 1.00000E-02 0.00000E+00 1.50000E-02 1. 00000E+00
Mat eri al 2 Scattering Monents
Gp Pn sig G >g, sig (G1)->g...
1 0 O0.00000E+00 0.00000E+00 1.50000E-03
2 0 5.00000E-03 3.00000E-03 1.50000E-03
3 0 1.00000E-02 3.00000E-03 2.00000E-03
1 1 0.00000E+00 0.00000E+00 3.00000E-05
2 1 1.50000E-04 0.00000E+00 3.00000E-05
3 1 0.00000E+00 3.00000E-05 3.00000E-05
***\WARNI NG Materi al 2

GROUP

3 Absorption+Scatter Cross Sections DO NOT sumto the total

FI XED SOURCE | NFORVATI ON

Crs Coor d/ Vect or Reference I nt egral
No Src Cell x cnifi y cmj zcmk Gp Source Particl es/Bdy Fl ux
1 Vol 14 0.0E+00 0.0E+00 O0.0E+00 1 Q V= 5.1200E+02
Source Dist Print Switch: (nsrcpr) O
Bi nary Source Mesh Dunp Switch: (nsdunp) O

BOUNDARY CONDI TI ON | NFORMATI ON
BACK (-1) Boundary Condition at x= . 0000:

VACUUM (zero entering current)
FRONT (-2) Boundary Condition at x= 24.0000:

VACUUM (zero entering current)
EAST (-3) Boundary Condition at y= . 0000:

VACUUM (zero entering current)
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WEST (-4) Boundary Condition at y= 24
VACUUM (zero entering current)

SQUTH (-5) Boundary Condition at z=
VACUUM (zero entering current)

NORTH (-6) Boundary Condition at z= 24
VACUUM (zero entering current)

. 0000:

. 0000:

. 0000:

PENTRAN Sn DI FFERENCI NG SCHEMES

Di ff Met hod

No Acronym Descri pti on

0O DD = Linear Dianmpond/ No Fixup

1 DzZ = Linear Dianond/Zero Fixup
2 DTW= Directional Theta Wi ghted
3 EDW= Exp-Directional Wighted

4 EDH = Exp-Direct. Onega Hybrid
5 EDA = Exp-Directional Averaged

MEDI UM Mesh Grid

Avg Metric Upgr ade
Description Criteria
Not Used None

Fi xups/ Sweep Fi xup
MaxWgt / Sweep We . 9600
DTWise/ Sweep None
DTWise/ Sweep None
DTWise/ Sweep None

COARSE CELL/ DI FFERENCI NG MAPPI NG TABLE**

Crs d obal D fference Mat  In
Cell i i k Method/ Metric Hng Bdy
1 1 1 1 2DTW6. OE-01 0 -1
2 2 1 1 2DTW6. 1E-01 0 1
3 3 1 1 2DTW6. OE-01 0 2
4 1 2 1 2DTW6. 1E-01 0 -1
5 2 2 1 2DTW6. 2E-01 0 4
6 3 2 1 2DTW6. 1E-01 0 5
7 1 3 1 2DTW6. OE-01 0 -1
8 2 3 1 2DTW6. 1E-01 0 7
9 3 3 1 2DTW6. OE-01 0 8
10 1 1 2 2DTW6. 1E-01 0 -1
11 2 1 2 2DTW6. 2E-01 0 10
12 3 1 2 2DTW6. 1E-01 0 11
13 1 2 2 2DTW6. 2E-01 0 -1
14 2 2 2 2DTW7.1E-01 0 13
15 3 2 2 2DTW6. 2E-01 0 14
16 1 3 2 2DTW6. 1E-01 0 -1
17 2 3 2 2DTW6. 2E-01 0 16
18 3 3 2 2DTW6. 1E-01 0 17
19 1 1 3 2DTW6. OE-01 0 -1
20 2 1 3 2DTW6. 1E-01 0 19
21 3 1 3 2DTW6. OE-01 0 20
22 1 2 3 2DTW6. 1E-01 0 -1
23 2 2 3 2DTW6. 2E-01 0 22
24 3 2 3 2DTW6. 1E-01 0 23
25 1 3 3 2DTW6. OE-01 0 -1
26 2 3 3 2DTW6. 1E-01 0 25
27 3 3 3 2DTW6. OE-01 0 26

FINE Mesh Gid

Qut Rgt Lft Bot

Bdy Bdy Bdy Bdy
2 -3 4 -5
3 -3 5 -5

-2 -3 6 -5
5 1 7 -5
6 2 8 -5

-2 3 9 -5
8 4 -4 -5
9 5 -4 -5

-2 6 -4 -5

11 -3 13 1

12 -3 14 2

-2 -3 15 3

14 10 16 4

15 11 17 5

-2 12 18 6

17 13 -4 7

18 14 -4 8

-2 15 -4 9

20 -3 22 10

21 -3 23 11

-2 -3 24 12

27 23 -4 17
-2 24 -4 18
XYZ nmesh

COARSE CELL/ DI FFERENCI NG MAPPI NG TABLE**

Crs d obal D fference Dom In
Cell i i k Method/ Metric MI  Bdy
83

Qut Rgt Lft Bot
Bdy Bdy Bdy Bdy

Met hod
Lock-in

Top X Y Z
Bdy Med Med Med

1
[e)Ne)NerNerNeorNerNep)

N

w
NNPNNNNNPNNNNNNNNNNNNNNNNNNNDDN
NNNNNNNNNNNNDNNNNDNNNNNNNNNNDDN

1
»
ONNNNNNNNNNNNNNNNNNNNDNNNNDNNDN

N
=

t ot al

Top X Y Z
Bdy Fin Fin Fin
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1 1 1 1 2DTW6. 6E-01 1 -1 2 -3 4
2 2 1 1 2DTW6. 7E-01 1 1 3 -3 5
3 3 1 1 2DTW6. 6E-01 1 2 -2 -3 6
4 1 2 1 2DTW6. 7E-01 1 -1 5 1 7
5 2 2 1 2DTW6. 8E-01 1 4 6 2 8
6 3 2 1 2DTW6. 7E-01 1 5 -2 3 9
7 1 3 1 2DTW6. 6E-01 1 -1 8 4 -4
8 2 3 1 2DTW6. 7E-01 1 7 9 5 -4
9 3 3 1 2DTW6. 6E-01 1 8 -2 6 -4
10 1 1 2 2DTW6. 7E-01 1 -1 11 -3 13
11 2 1 2 2DTW6. 8E-01 1 10 12 -3 14
12 3 1 2 2DTW6. 7E-01 1 11 -2 -3 15
13 1 2 2 2DTW6. 8E-01 1 -1 14 10 16
14 2 2 2 2DTW7.5E-01 2 13 15 11 17
15 3 2 2 2DTW6. 8E-01 1 14 -2 12 18
16 1 3 2 2DTW6. 7E-01 1 -1 17 13 -4
17 2 3 2 2DTW6. 8E-01 1 16 18 14 -4
18 3 3 2 2DTW6. 7E-01 1 17 -2 15 -4
19 1 1 3 2DTW6. 6E-01 1 -1 20 -3 22
20 2 1 3 2DTW6. 7E-01 1 19 21 -3 23
21 3 1 3 2DTW6. 6E-01 1 20 -2 -3 24
22 1 2 3 2DTW6. 7E-01 1 -1 23 19 25
23 2 2 3 2DTW6. 8E-01 1 22 24 20 26
24 3 2 3 2DTW6. 7E-01 1 23 -2 21 27
25 1 3 3 2DTW6. 6E-01 1 -1 26 22 -4
26 2 3 3 2DTW6. 7E-01 1 25 27 23 -4
27 3 3 3 2DTW6. 6E-01 1 26 -2 24 -4

XYZ nesh total

**Negative Cell Numbers |Indicate a BOUNDARY CONDI Tl ON

COARSE MESH | NFORVATI ON

27 Total COARSE Meshes
Nunmber of X Coarse Meshes: 3
1 Bounded Between x= . 0000 and x= 8. 0000 cm
2 Bounded Between x= 8. 0000 and x= 16.0000 cm
3 Bounded Between x= 16.0000 and x= 24.0000 cm

Y Coarse Meshes: 3

1 Bounded Between y= . 0000 and y= 8. 0000 cm

2 Bounded Between y= 8. 0000 and y= 16.0000 cm

3 Bounded Between y= 16.0000 and y= 24.0000 cm
Z Coarse Meshes: 3

1 Bounded Between z= . 0000 and z= 8. 0000 cm

2 Bounded Between z= 8. 0000 and z= 16.0000 cm

3 Bounded Between z= 16.0000 and z= 24.0000 cm

Material Print Switch: (nmatpr) O

LOCAL MATERI AL | NVENTORY/ VOLUVE TABLE
(Local Volunme : 1.3824E+04 cnB in 1728 meshes)

Mat eri al Local Nunber Local (cnB) Percent
Numnber of Meshes Vol urme of Local
34

1
[e)Ne)NerNerNeorNerNe))

6
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0 0/ 1728 0. O0O00OE+00 .0
1 1664 / 1728 1. 3312E+04 96. 3
2 64 / 1728 5. 1200E+02 3.7

CONVERGENCE CRI TERI A

I nner Medi um Mesh M n Tol erance: 2.0000E-01
Inner Fine Mesh Mn Tol erance: 5.0000E-04
Quter Medi um Mesh Set Tol erance: 5. 0000E-04
Quter Fine Mesh Set Tolerance: 5.0000E-04
Al'l oned Max I nner lter/ Goup; Quter: 50

Al oned Max Wal |l - Ti ne: .0 mn

Source iteration Method 2: Hironoto-Wenke G oup Convergence
Accel eration Method 0: (No Accel eration)

Tayl or Projection Coupling Order 1: (Q(h”"2) spatial truncation)
I nner lterations:
Group 1 CONVERGED in 16 iterations
Group 2 CONVERCGED i n 16 iterations
Group 3 CONVERCGED i n 16 iterations
Total Medium Mesh (inner) 21
Total Fine Mesh (inner) 27
Total Inner 48
EXECUTI ON AND TI M NG
Run Start: 05/06/2000 05:34:04
Problem Start: 05/06/2000 05: 34: 08
Probl em Stop: 05/06/ 2000 05:36:02
Run Ti ne: 1. mn 59.0 sec ( 119.0 sec)
Probl em Tine: 1. mn 55.2 sec ( 115.2 sec)
CPU Estinate: 92.9% Dedicated ( 107.0 total sec)
Cunul ative Run: 119.0 sec Problem 115. 2 sec
Event % Using Cunul ati ve RUN Ti ne:
(Message Ot her Applies to Other Events)
Proc File Setup Source Xport Fluxes Conv Rebal Milti Mg Msg
No |Inputs Prob Update Sweeps &Curr in/out accel Gid Sweep O her
1 .0 0 26.0 49.6 13.4 . 8 .0 15.1 0 0
Avg% .0 .0 26.0 49.6 13.4 . 8 0 15.1 0 .0
Sec ( .0 .0 31.0 59.0 16.0 1.0 0 18.0 0 . 0)
Event % Usi ng Cunul ati ve PROBLEM Ti ne:
(Message Ot her Applies to Other Events)
Proc File Setup Source Xport Fluxes Conv Rebal Milti Mg Msg
No |Inputs Prob Update Sweeps &Curr in/out accel Gid Sweep O her
1 0 26.9 51.2 13.9 .9 .0 15.6 0 0
Avg% ---- .0 26.9 51.2 13.9 .9 0 15.6 0 .0
Sec ( ---- 0 31.0 659.0 16.0 1.0 0 18.0 0 . 0)
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| NTEGRAL BOUNDARY LEAKAGE

Gp BackNet|-x

Front Net| +x EastNet|-y WestNet|+y SouthNet|-z NorthNet|+z

1 -2.4970E+01 2.4970E+01 -2.4970E+01 2.4970E+01 -2.4970E+01 2.4970E+01
2 -2.9750E+00 2.9751E+00 -2.9750E+00 2.9751E+00 -2.9750E+00 2.9751E+00
3 -2.5749E+00 2.5751E+00 -2.5749E+00 2.5751E+00 -2.5749E+00 2.5751E+00
Tot -3.0520E+01 3. 0520E+01 -3.0520E+01 3. 0520E+01 -3.0520E+01 3. 0520E+01
| NTEGRAL SYSTEM BALANCE
Gp -(Leakage) -Collisions +ScatterSrc +FissionSrc +Vol &dySrc = Bal ance
1 -1.4982E+02 -4.1157E+02 4.9388E+01 0. 0000E+00 5.1200E+02 -1.2589E-04
2 -1.7850E+01 -6.3876E+01 8.1727E+01 0. 0000E+00 0. 0000E+00 -2.2888E-05
3 -1.5450E+01 -1.0358E+02 1.1903E+02 0.0000E+00 0.0000E+00 0.0000E+00
Tot -1.8312E+02 -5.7902E+02 2.5015E+02 0. 0000E+00 5.1200E+02 -1.4877E-04
Coarse Mesh Summary Switch: (nsumpr) 1
COARSE MESH SUMMARY DATA Group 1
Crs: Domvat | X-cm y-cm zZ-cm Vol unme cnB Max HOpt
Net Current Phi (Cell) QO:Scatter @Q0:Fission Q:VolSrc Error Norm
-(Leakage) -Collisions +ScatterSrc +FissionSrc +Vol &dySrc Bal ance
1 1 4. 0000 4. 0000 4,0000 5.1200E+02 1. 1456E+00
-7.6073E-02 8.6446E-02 1.2967E-03 0.0000E+00 O0.0000E+00 2.0661E-07
4. 8686E+00 -5.5326E+00 6.6391E-01 O0.0000E+00 O0.0000E+00 -5.3644E-07
2 1 12. 0000 4. 0000 4,0000 5.1200E+02 1. 1456E+00
-1. 6058E-01 1.8248E-01 2.7372E-03 0.0000E+00 0. 0000E+00 1. 8412E- 07
1.0277E+01 -1.1679E+01 1.4014E+00 0. 0000E+00 0. 0000E+00 1. 5497E- 06
3 1 20. 0000 4. 0000 4,0000 5.1200E+02 1. 1456E+00
-7.6073E-02 8.6446E-02 1.2967E-03 0.0000E+00 O0.0000E+00 2. 0661E-07
4. 8686E+00 -5.5326E+00 6.6391E-01 0.0000E+00 O0.0000E+00 -9.5367E-07
4 1 4. 0000 12. 0000 4,0000 5.1200E+02 1. 1456E+00
-1. 6058E-01 1.8248E-01 2.7372E-03 0.0000E+00 0. 0000E+00 1. 2803E- 07
1.0277E+01 -1.1679E+01 1.4014E+00 0. 0000E+00 0.0000E+00 -2.3842E-07
5 1 12. 0000 12. 0000 4,0000 5.1200E+02 1. 1456E+00
-4.6936E-01 5.3337E-01 8.0005E-03 0.0000E+00 0. 0000E+00 1. 9455E- 07
3. 0039E+01 -3.4136E+01 4.0963E+00 0. 0000E+00 0.0000E+00 2.2411E-05
6 1 20. 0000 12. 0000 4,0000 5.1200E+02 1. 1456E+00
-1. 6058E-01 1.8248E-01 2.7372E-03 0.0000E+00 0. 0000E+00 1. 1180E- 07
1.0277E+01 -1.1679E+01 1.4014E+00 0. 0000E+00 0.0000E+00  2.5034E-06
7 1 4. 0000 20. 0000 4,0000 5.1200E+02 1. 1456E+00
-7.6073E-02 8.6446E-02 1.2967E-03 0.0000E+00 O0.0000E+00 2. 0661E-07
4. 8686E+00 -5.5326E+00 6.6391E-01 O0.0000E+00 O0.0000E+00 -5.9605E-08
8 1 12. 0000 20. 0000 4,0000 5.1200E+02 1. 1456E+00
-1.6058E-01 1.8248E-01 2.7372E-03 0.0000E+00 0.0000E+00 1. 1484E- 07
1.0277E+01 -1.1679E+01 1.4014E+00 0. 0000E+00 0.0000E+00 -3.5763E-07
9 1 20. 0000 20. 0000 4,0000 5.1200E+02 1. 1456E+00
-7.6073E-02 8.6446E-02 1.2967E-03 0.0000E+00 0.0000E+00 2. 1668E-07
4.8686E+00 -5.5326E+00 6.6391E-01 O0.0000E+00 0. 0000E+00 -1.3709E-06
10 1 4, 0000 4. 0000 12. 0000 5. 1200E+02 1. 1456E+00
-1. 6058E-01 1.8248E-01 2.7372E-03 0.0000E+00 0.0000E+00 2.2968E-07
1.0277E+01 -1.1679E+01 1.4014E+00 0. 0000E+00 0.0000E+00 -1.4305E-06
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11 1 12. 0000 4.0000 12. 0000 5.1200E+02 1. 1456E+00
-4.6936E-01 5.3337E-01 8.0005E-03 0.0000E+00 0.0000E+00  1.1407E-07
3. 0039E+01 -3.4136E+01 4.0963E+00 0.0000E+00 0.0000E+00 1.7643E-05
12 1 20. 0000 4. 0000 12. 0000 5.1200E+02 1. 1456E+00
-1. 6058E-01 1.8248E-01 2.7372E-03 0.0000E+00 0.0000E+00  1.1484E-07
1.0277E+01 -1.1679E+01 1.4014E+00 0. 0000E+00 0.0000E+00 1.3113E-06
13 1 4.0000 12. 0000 12. 0000 5.1200E+02 1. 1456E+00
-4.6936E-01 5.3337E-01 8.0005E-03 0.0000E+00 0.0000E+00  2.1951E-07
3. 0039E+01 -3.4136E+01 4.0963E+00 0. 0000E+00 0.0000E+00 1. 1444E-05
14 2 12. 0000 12. 0000 12. 0000 5.1200E+02  1.1456E-01
7.6927E+00 3.4921E+00 5.2381E-03 0.0000E+00 1.0000E+00  6.2484E-08
-4.9233E+02 -2.2349E+01 2. 6819E+00 0.0000E+00 5.1200E+02 -1.2016E-04
15 1 20. 0000 12. 0000 12. 0000 5.1200E+02 1. 1456E+00
-4.6936E-01 5.3337E-01 8.0005E-03 0.0000E+00 0.0000E+00  1.4634E-07
3. 0039E+01 -3.4136E+01 4. 0963E+00 0. 0000E+00 0. 0000E+00 6. 1989E-06
16 1 4.0000 20. 0000 12. 0000 5.1200E+02 1. 1456E+00
-1. 6058E-01 1.8248E-01 2.7372E-03 0.0000E+00 0.0000E+00 1.2781E-07
1.0277E+01 -1.1679E+01 1.4014E+00 0. 0000E+00 0.0000E+00  2.3842E-07
17 1 12. 0000 20. 0000 12. 0000 5.1200E+02 1. 1456E+00
-4.6936E-01 5.3337E-01 8.0005E-03 0.0000E+00 0.0000E+00  1.2092E-07
3. 0039E+01 -3.4136E+01 4. 0963E+00 0. 0000E+00 0. 0000E+00 5.7220E-06
18 1 20. 0000 20. 0000 12. 0000 5.1200E+02 1. 1456E+00
-1. 6058E-01 1.8248E-01 2.7372E-03 0.0000E+00 0.0000E+00 1.4016E-07
1.0277E+01 -1.1679E+01 1.4014E+00 0. 0000E+00 0.0000E+00 1.1921E-06
19 1 4.0000 4. 0000 20. 0000 5.1200E+02  1.1456E+00
-7.6073E-02 8.6446E-02 1.2967E-03 0.0000E+00 0.0000E+00  1.9825E-07
4. 8686E+00 -5.5326E+00 6.6391E-01 0.0000E+00 0. 0000E+00 -4.7684E-07
20 1 12. 0000 4. 0000 20. 0000 5.1200E+02  1.1456E+00
-1. 6058E-01 1.8248E-01 2.7372E-03 0.0000E+00 0.0000E+00  2.2968E-07
1.0277E+01 -1.1679E+01 1.4014E+00 0. 0000E+00 0.0000E+00 2. 1458E-06
21 1 20. 0000 4. 0000 20. 0000 5.1200E+02  1.1456E+00
-7.6073E-02 8.6446E-02 1.2967E-03 0.0000E+00 0.0000E+00  1.1029E-07
4. 8686E+00 -5.5326E+00 6.6391E-01 0.0000E+00 0.0000E+00 -1.0133E-06
22 1 4. 0000 12. 0000 20. 0000 5.1200E+02  1.1456E+00
-1. 6058E-01 1.8248E-01 2.7372E-03 0.0000E+00 0.0000E+00 1.4016E-07
1.0277E+01 -1.1679E+01 1.4014E+00 0. 0000E+00 0. 0000E+00 2. 1458E- 06
23 1 12. 0000 12. 0000 20. 0000 5.1200E+02  1.1456E+00
-4.6936E-01 5.3337E-01 8.0005E-03 0.0000E+00 0.0000E+00  1.2092E-07
3. 0039E+01 -3.4136E+01 4.0963E+00 0.0000E+00 0.0000E+00 -1.0490E-05
24 1 20. 0000 12. 0000 20. 0000 5.1200E+02  1.1456E+00
-1. 6058E-01 1.8248E-01 2.7372E-03 0.0000E+00 0.0000E+00 1.8411E-07
1.0277E+01 -1.1679E+01 1.4014E+00 0.0000E+00 0.0000E+00 2. 2650E-06
25 1 4. 0000 20. 0000 20. 0000 5.1200E+02  1.1456E+00
-7.6073E-02 8.6446E-02 1.2967E-03 0.0000E+00 0.0000E+00 1.7490E-07
4.8686E+00 -5.5326E+00 6.6391E-01 O0.0000E+00 0. 0000E+00 - 8.3447E-07
26 1 12. 0000 20. 0000 20. 0000 5.1200E+02  1.1456E+00
-1. 6058E-01 1.8248E-01 2.7372E-03 0.0000E+00 0.0000E+00  1.4040E-07
1.0277E+01 -1.1679E+01 1.4014E+00 0.O0000E+00 0.0000E+00  3.9339E-06
27 1 20. 0000 20. 0000 20. 0000 5.1200E+02  1.1456E+00
-7.6073E-02 8.6446E-02 1.2967E-03 0.0000E+00 0.0000E+00 1.2690E-07
4.8686E+00 -5.5326E+00 6.6391E-01 O0.0000E+00 0. 0000E+00 - 8.3447E-07
COARSE MESH SUMMVARY DATA Goup 2

Crs: Domvat | X-cm y-cm z-cm Vol ume cnB Max HOpt
Net Current Phi (Cell) QO:Scatter Q0:Fission Q:VolSrc Error Norm

-(Leakage) -Collisions +ScatterSrc +FissionSrc +Vol &dySrc = Bal ance
1 1 4. 0000 4.0000 4,.0000 5.1200E+02 1.5278E+00

5.6582E-04 1.4223E-02 2.4417E-03 0.0000E+00 0. 0000E+00 6. 8631E- 05
-3.6212E-02 -1.2139E+00 1.2501E+00 0. 0000OE+00 O0.0000E+00 -1.1921E-07
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
N A N B N W

VN

= W N B w o1 N A

= W N B w o1 N A w o1 N A

=W =W =W N B

N BB w o1

. 0428E- 02
. 9474E+00

2 1

. 6195E- 03
. 9565E- 01 -

3 1

. 6629E- 04
. 6243E-02 -

4 1

. 6195E- 03
. 9565E- 01 -

5 1

. 0426E- 02
. 9473E+00 -

6 1

. 6204E- 03
. 9570E-01 -

7 1

. 6629E- 04
. 6243E-02 -

8 1

. 6203E- 03
. 9570E-01 -

9 1

. 6677E- 04
. 6273E- 02

10 1

. 6195E- 03
. 9565E- 01

11 1

. 0426E- 02
. 9473E+00 -

12 1

. 6203E- 03
. 9570E- 01

H Ol o © Ol NN A Ol NN

13 1

. 0426E- 02
. 9473E+00 -

14 2

. 6372E- 02
. 3278E+00 -

15 1

. 0428E- 02
. 9474E+00 -

16 1

. 6203E- 03
. 9570E-01 -

17 1

18 1

. 6212E- 03
. 9575E- 01 -

19 1

. 6629E- 04
. 6243E- 02 -

20 1

. 6204E- 03
. 9570E-01 -

21 1

. 6677E- 04
. 6273E-02 -

22 1

. 6203E- 03

(=Y

NN

5
- 4.
2.
2. 2074E+00

1
. 2140E+00

12. 0000

. 5861E- 02
. 2073E+00

20. 0000

. 4224E- 02
. 2140E+00

4. 0000

. 5861E- 02
. 2073E+00

12. 0000

. 2472E- 02
. 4785E+00

20. 0000

. 5862E- 02
. 2074E+00

4. 0000

. 4224E- 02
. 2140E+00

12. 0000

. 5862E- 02
. 2074E+00

20. 0000

. 4224E- 02
. 2140E+00

4. 0000

. 5861E- 02
. 2073E+00

12. 0000

. 2472E- 02
. 4785E+00

20. 0000

. 5862E- 02
. 2074E+00

4.0000

. 2472E-02
. 4785E+00

12. 0000

. 4309E- 02
. 0493E-01

20. 0000

. 2473E-02
. 4786E+00

4.0000

. 5862E- 02
. 2074E+00

12. 0000
2473E-02
4786E+00

20. 0000
5863E- 02

4.0000
4224E- 02

12. 0000

. 5862E- 02
. 2074E+00

20. 0000

. 4224E- 02
. 2140E+00

4.0000

. 5862E- 02

N B [N w o [N N B [N N B =N N B =N N B o N B =N N B

N B [N ]

=N

=N

4. 0000

. 8885E- 03
. 5029E+00

4.0000

. 4418E- 03
. 2502E+00

12. 0000

. 8885E- 03
. 5029E+00

12. 0000

. 2550E- 02
. 4258E+00

12. 0000

. 8888E- 03
. 5031E+00

20. 0000

. 4418E- 03
. 2502E+00

20. 0000

. 8888E- 03
. 5031E+00

20. 0000

. 4420E- 03
. 2503E+00

4. 0000

. 8885E- 03
. 5029E+00

4.0000

. 2550E- 02
. 4258E+00

4. 0000

. 8888E- 03
. 5031E+00

12. 0000

. 2550E- 02
. 4258E+00

12. 0000

. 1186E- 03
. 1327E+00

12. 0000

. 2551E- 02
. 4260E+00

20. 0000

. 8888E- 03
. 5031E+00

20. 0000

. 2551E- 02
. 4260E+00

20. 0000

. 8890E- 03
. 5032E+00

4.0000

. 4418E- 03
. 2502E+00

4.0000

. 8888E- 03
. 5031E+00

4.0000

. 4420E- 03
. 2503E+00

12. 0000

. 8888E- 03

o [oNe) oo [oNe) [oNe) [oNe) [oNe) oo [oNe) [oNe) [oNe) [oNe) [oNe) [oNe) oo [oNe) [oNe) [oNe) [oNe) [oNe) oo
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4. 0000

. 0000E+00
. 0000E+00

4.0000

. 0000E+00
. 0000E+00

4. 0000

. 0000E+00
. 0000E+00

4. 0000

. 0000E+00
. 0000E+00

4. 0000

. 0000E+00
. 0000E+00

4. 0000

. 0000E+00
. 0000E+00

4.0000

. 0000E+00
. 0000E+00

4. 0000

. 0000E+00
. 0000E+00

12. 0000

. 0000E+00
. 0000E+00

12. 0000

. 0000E+00
. 0000E+00

12. 0000

. 0000E+00
. 0000E+00

12. 0000

. 0000E+00
. 0000E+00

12. 0000

. 0000E+00
. 0000E+00

12. 0000

. 0000E+00
. 0000E+00

12. 0000

. 0000E+00
. 0000E+00

12. 0000

. 0000E+00
. 0000E+00

12. 0000

. 0000E+00
. 0000E+00

20. 0000

. 0000E+00
. 0000E+00

20. 0000

. 0000E+00
. 0000E+00

20. 0000

. 0000E+00
. 0000E+00

20. 0000

. 0000E+00

QUIOOUIOO0OUITOO0UIOCOUIOOUIOOUITOO0OUIOCOUIOOUITOO0OUIOO0UIOCOUIOOUITOO0OUITOOUIOOUITOOUITOOUTOOUTIOOUI

. 1200E+02
. 0000E+00
. 0000E+00
. 1200E+02
. 0000E+00
. 0000E+00
. 1200E+02
. 0000E+00
. 0000E+00
. 1200E+02
. 0000E+00
. 0000E+00
. 1200E+02
. 0000E+00
. 0000E+00
. 1200E+02
. 0000E+00
. 0000E+00
. 1200E+02
. 0000E+00
. 0000E+00
. 1200E+02
. 0000E+00
. 0000E+00
. 1200E+02
. 0000E+00
. 0000E+00
. 1200E+02
. 0000E+00
. 0000E+00
. 1200E+02
. 0000E+00
. 0000E+00
. 1200E+02
. 0000E+00
. 0000E+00
. 1200E+02
. 0000E+00
. 0000E+00
. 1200E+02
. 0000E+00
. 0000E+00
. 1200E+02
. 0000E+00
. 0000E+00
. 1200E+02
. 0000E+00
. 0000E+00
. 1200E+02
. 0000E+00
. 0000E+00
. 1200E+02
. 0000E+00
. 0000E+00
. 1200E+02
. 0000E+00
. 0000E+00
. 1200E+02
. 0000E+00
. 0000E+00
. 1200E+02
. 0000E+00

NRPRPNRONRPNRENNRPRANRANRONRPWORNRRPONRPRRRPRRURPRRUONRPANRPNREPANRPNRRPWORRNRPRNRER

. 5278E+00
. 0394E- 04
. 9802E- 08
. 5278E+00
. 7372E- 04
. 4506E- 08
. 5278E+00
. 0415E- 04
. 5763E- 07
. 5278E+00
. 3793E- 04
. 1526E- 07
. 5278E+00
. 0698E- 04
. 7684E- 07
. 5278E+00
. 7335E- 04
. 9802E- 07
. 5278E+00
. 0706E- 04
. 1723E- 07
. 5278E+00
. 6195E- 04
. 9605E- 08
. 5278E+00
. 0404E- 04
. 3644E- 07
. 5278E+00
. 3783E- 04
. 1921E- 06
. 5278E+00
. 0741E- 04
. 5367E- 07
. 5278E+00
. 3793E- 04
. 1458E- 06
. 5278E-01
. 6270E- 05
. 5763E- 07
. 5278E+00
. 3897E- 04
. 0000E+00
. 5278E+00
. 0708E- 04
. 1723E- 07
. 5278E+00
. 3906E- 04
. 7684E- 07
. 5278E+00
. 9550E- 04
. 3842E- 07
. 5278E+00
. 7372E- 04
. 9802E- 07
. 5278E+00
. 0719E- 04
. 5763E- 07
. 5278E+00
. 6216E- 04
. 9372E- 07
. 5278E+00
. 0693E- 04
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-2.9570E-01 -2.2074E+00 2.5031E+00 0. 0000E+00 0. 0000E+00 -6.5565E-07
23 1 12. 0000 12. 0000 20. 0000 5.1200E+02 1. 5278E+00
3. 0428E-02 5.2473E-02 1.2551E-02 0.0000E+00 0.0000E+00 2.3887E-04
-1.9474E+00 -4.4786E+00 6.4260E+00 0. 0000E+00 0. 0000E+00 2. 3842E- 07
24 1 20. 0000 12. 0000 20. 0000 5. 1200E+02 1. 5278E+00
4.6212E-03 2.5863E-02 4.8890E-03 0.0000E+00 0.0000E+00  2.9559E-04
-2.9575E-01 -2.2074E+00 2.5032E+00 0. 0000E+00 0. 0000E+00 -5.9605E-08
25 1 4. 0000 20. 0000 20. 0000 5. 1200E+02 1. 5278E+00
5.6677E-04 1.4224E-02 2.4420E-03 0.0000E+00 0.0000E+00 2.6197E-04
-3.6273E-02 -1.2140E+00 1.2503E+00 0. 0000E+00 O0.0000E+00 7. 4506E-08
26 1 12. 0000 20. 0000 20. 0000 5. 1200E+02 1. 5278E+00
4.6212E-03 2.5863E-02 4.8890E-03 0.0000E+00 0.0000E+00  2.9550E-04
-2.9575E-01 -2.2074E+00 2.5032E+00 0. 0000E+00 0.0000E+00 3. 2783E-07
27 1 20. 0000 20. 0000 20. 0000 5. 1200E+02 1. 5278E+00
5.6725E-04 1.4225E-02 2.4422E-03 0.0000E+00 0.0000E+00  3.5235E-04
-3.6304E-02 -1.2141E+00 1.2504E+00 0. 0000E+00 0.0000E+00 -7.0035E-07
COARSE MESH SUMMARY DATA Goup 3

Crs: Domvat | X-cm y-cm zZ-cm Vol unme cnB Max HOpt
Net Current Phi (Cell) QO:Scatter Q0:Fission Q:VolSrc Error Norm

-(Leakage) -Collisions +ScatterSrc +FissionSrc +Vol &dySrc = Bal ance
1 1 4. 0000 4. 0000 4,0000 5.1200E+02 2. 2913E+00
8. 4159E-06 1.4365E-02 3.5922E-03 0.0000E+00 0.0000E+00 7. 3584E-05
-5.3862E-04 -1.8387E+00 1.8392E+00 0. 0000E+00 0. 0000E+00 -2.9802E-08
2 1 12. 0000 4. 0000 4,0000 5.1200E+02 2. 2913E+00
2. 3983E-03 2.7506E-02 7.1763E-03 0.0000E+00 0. 0000E+00 1. 2098E- 04
-1.5349E- 01 -3.5208E+00 3.6743E+00 0. 0000E+00 0. 0000E+00 1. 0431E- 06
3 1 20. 0000 4. 0000 4,0000 5.1200E+02 2. 2913E+00
8. 9703E-06 1.4365E-02 3.5925E-03 0.0000E+00 0.0000E+00 2.1323E-04
-5.7410E- 04 -1.8388E+00 1.8393E+00 0.0000E+00 O0.0000E+00  2.5332E-07
4 1 4. 0000 12. 0000 4,0000 5.1200E+02 2. 2913E+00
2. 3983E-03 2.7506E-02 7.1763E-03 0.0000E+00 0. 0000E+00 1. 2054E- 04
-1.5349E- 01 -3.5208E+00 3.6743E+00 0. 0000E+00 0. 0000E+00 8. 3447E-07
5 1 12. 0000 12. 0000 4,0000 5.1200E+02 2. 2913E+00
2. 6530E-02 5.9506E-02 1.8193E-02 0.0000E+00 0.0000E+00 1. 6524E- 04
-1. 6979E+00 -7.6167E+00 9. 3147E+00 0. 0000E+00 0. 0000E+00 4. 7684E-07
6 1 20. 0000 12. 0000 4,0000 5.1200E+02 2. 2913E+00
2.3993E-03 2.7507E-02 7.1768E-03 0.0000E+00 0.0000E+00  2.5838E-04
-1.5355E-01 -3.5210E+00 3. 6745E+00 0.0000E+00 0. 0000E+00 4. 7684E-07
7 1 4, 0000 20. 0000 4,0000 5.1200E+02 2. 2913E+00
8.9703E-06 1.4365E-02 3.5925E-03 0.0000E+00 0.0000E+00 2.1317E-04
-5.7410E-04 -1.8388E+00 1.8393E+00 0.0000E+00 0.0000E+00 1. 3411E- 07
8 1 12. 0000 20. 0000 4,0000 5.1200E+02 2. 2913E+00
2.3993E-03 2.7507E-02 7.1768E-03 0.0000E+00 0.0000E+00 2.5790E-04
-1.5355E-01 -3.5210E+00 3.6745E+00 0. 0000E+00 0. 0000E+00 1. 7881E- 07
9 1 20. 0000 20. 0000 4,0000 5.1200E+02 2. 2913E+00
9.5312E-06 1.4366E-02 3.5927E-03 0.0000E+00 0.0000E+00 3. 3400E-04
-6. 0999E- 04 -1.8389E+00 1.8395E+00 0.0000E+00 0. 0000E+00 -3.5763E-07
10 1 4. 0000 4. 0000 12. 0000 5. 1200E+02 2. 2913E+00
2.3983E-03 2.7506E-02 7.1763E-03 0.0000E+00 0.0000E+00 1. 2043E- 04
-1.5349E-01 -3.5208E+00 3.6743E+00 0.0000E+00 0.0000E+00 5.6624E-07
11 1 12. 0000 4, 0000 12. 0000 5. 1200E+02 2. 2913E+00
2.6530E-02 5.9506E-02 1.8193E-02 0.0000E+00 0.0000E+00 1. 6515E- 04
-1. 6979E+00 -7.6167E+00 9. 3147E+00 0. 0000E+00 0. 0000E+00 9.5367E-07
12 1 20. 0000 4. 0000 12. 0000 5. 1200E+02 2. 2913E+00
2.3993E-03 2.7507E-02 7.1768E-03 0.0000E+00 0.0000E+00 2.5782E-04
-1.5355E-01 -3.5210E+00 3.6745E+00 O0.0000E+00 0. 0000E+00  4.1723E-07
13 1 4. 0000 12. 0000 12. 0000 5. 1200E+02 2. 2913E+00
2.6530E-02 5.9506E-02 1.8193E-02 0.0000E+00 0.0000E+00 1. 6543E- 04
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-1. 6979E+00
14 2
5. 3358E-02
- 3. 4149E+00
15 1
2. 6532E-02
1. 6980E+00
16 1
2. 3993E-03
1. 5355E-01
17 1
2. 6532E-02
1. 6980E+00
18 1
2. 4002E- 03
1. 5361E-01
19 1
8. 9707E- 06
-5. 7413E- 04
20 1
2. 3993E-03
1. 5355E-01
21 1
9. 5288E- 06
- 6. 0984E- 04
22 1
2. 3993E-03
1. 5355E-01
23 1
2. 6532E-02
1. 6980E+00
24 1
2. 4002E-03
1. 5361E-01
25 1
9. 5293E- 06
- 6. 0987E- 04
26 1
2. 4002E-03
1. 5361E-01
27 1
1. 0084E- 05
- 6. 4535E- 04

Bi nary Fl ux

-7.6167E+00 9.3147E+00 0. 0000E+00
12. 0000 12. 0000 12. 0000
1.1950E-01 8.4622E-03 0.0000E+00
-9.1777E-01 4.3326E+00 0. 0000E+00
20. 0000 12. 0000 12. 0000
5. 9508E-02 1.8193E-02 0. 0000E+00
-7.6170E+00 9. 3150E+00 0. 0000E+00
4. 0000 20. 0000 12. 0000
2. 7507E-02 7.1768E-03 0. 0000E+00
-3.5210E+00 3.6745E+00 0. 0000E+00
12. 0000 20. 0000 12. 0000
5. 9508E-02 1.8193E-02 0. 0000E+00
-7.6170E+00 9. 3150E+00 0. 0000E+00
20. 0000 20. 0000 12. 0000
2. 7509E-02 7.1772E-03 0. 0000E+00
-3.5211E+00 3.6747E+00 0. 0000E+00
4. 0000 4. 0000 20. 0000
1.4365E-02 3.5925E-03 0. 0000E+00
-1.8388E+00 1.8393E+00 0. 0000E+00
12. 0000 4. 0000 20. 0000
2. 7507E-02 7.1768E-03 0. 0000E+00
-3.5210E+00 3.6745E+00 0. 0000E+00
20. 0000 4. 0000 20. 0000
1.4366E-02 3.5927E-03 0.0000E+00
-1.8389E+00 1.8395E+00 0. 0000E+00
4. 0000 12. 0000 20. 0000
2. 7507E-02 7.1768E-03 0. 0000E+00
-3.5210E+00 3.6745E+00 0. 0000E+00
12. 0000 12. 0000 20. 0000
5. 9508E-02 1.8193E-02 0. 0000E+00
-7.6170E+00 9. 3150E+00 0. 0000E+00
20. 0000 12. 0000 20. 0000
2. 7509E-02 7.1772E-03 0. 0000E+00
-3.5211E+00 3.6747E+00 0. 0000E+00
4. 0000 20. 0000 20. 0000
1.4366E-02 3.5927E-03 0.0000E+00
-1. 8389E+00 1.8395E+00 0. 0000E+00
12. 0000 20. 0000 20. 0000
2. 7509E-02 7.1772E-03 0. 0000E+00
-3.5211E+00 3.6747E+00 0. 0000E+00
20. 0000 20. 0000 20. 0000
1.4367E-02 3.5930E-03 0.0000E+00
-1. 8390E+00 1.8396E+00 0. 0000E+00
Moment Dunp Switch: (nfdunmp) 1
Fl ux Dump Switch: (nadunp) O

Bi nary Angul ar

Pr obl em Qut put Conpl et e:

Qut I/0

05/ 06/ 2000 05: 36: 02
.0 sec on proc 1
Cumul ative Problem Tine

115.2 sec on proc

90
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1

. 0000E+00
. 1200E+02
. 0000E+00
. 0000E+00
. 1200E+02
. 0000E+00
. 0000E+00
. 1200E+02
. 0000E+00
. 0000E+00
. 1200E+02
. 0000E+00
. 0000E+00
. 1200E+02
. 0000E+00
. 0000E+00
. 1200E+02
. 0000E+00
. 0000E+00
. 1200E+02
. 0000E+00
. 0000E+00
. 1200E+02
. 0000E+00
. 0000E+00
. 1200E+02
. 0000E+00
. 0000E+00
. 1200E+02
. 0000E+00
. 0000E+00
. 1200E+02
. 0000E+00
. 0000E+00
. 1200E+02
. 0000E+00
. 0000E+00
. 1200E+02
. 0000E+00
. 0000E+00
. 1200E+02
. 0000E+00
. 0000E+00

on proc

1

QBRERNPFPWONPONNWNDENNENNNONNNNENNEPRPONENNENNENNNRERERERN

. 1526E- 07
. 3748E- 01
. 0519E- 04
. 3842E- 07
. 2913E+00
. 9955E- 04
. 6689E- 06
. 2913E+00
. 5811E- 04
. 1921E- 07
. 2913E+00
. 9974E- 04
. 6689E- 06
. 2913E+00
. 7T676E- 04
. 1325E- 06
. 2913E+00
. 1323E- 04
. 0431E- 07
. 2913E+00
. 5804E- 04
. 0862E- 07
. 2913E+00
. 3420E- 04
. 0862E- 07
. 2913E+00
. 5804E- 04
. 4703E- 07
. 2913E+00
. 9946E- 04
. 7684E- 07
. 2913E+00
. 7640E- 04
. 7T486E- 07
. 2913E+00
. 3400E- 04
. 7684E- 07
. 2913E+00
. 7T676E- 04
. 4901E- 07
. 2913E+00
. 5395E- 04
. 5134E- 07
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The Logfile for the “Box-in-a-Box” problem is provided below:

PENTRAN 3-D Parall el Discrete Ordinates Code Version 9.00R
LOGFI LE FOR PROBLEM : boxx.ref

FI DO- COMW SCRATCH FI LE: boxx1. dat
PROCESSOR 1 Processed FIDO | nputs:

COWPI LED PARAMETER SETTI NGS/ PROBLEM LI M TS:

Max Proc Menory Required (M Proc): 14. 8
Max Proc Menmory Linmit, M (maxmen): 15
Max No. Procs Al lowed For (maxpcs): 1
Max d obal Coarse Meshes (maxgceny: 27
Max Restart Total G oups (nmaxxsg): 0
Max Local Coarse Meshes (maxcnt): 27
Max Coarse Meshes/1 axis (maxcrs): 3
Max Medi um Meshes/ Coarse (nmaxmmt): 64
Max Medi um Meshes/1 axis (maxmed): 12
Max Fi ne Meshes/ Coarse (nmaxfnt): 64
Max Fi ne Meshes/1 axis (maxfin): 12

Max d obal Energy Groups (maxgrp): 3
Max Local Energy Groups (maxglc): 3
Max Local Sweep Octants (nmaxswp): 8
Max Quad. Angles/Cctant (maxqgdn): 10
Max Material (xsec)Types (maxmat): 2
Max Leg Scat di mensioned (maxleg): 1
Max d obal Fixed Sources (maxsrc): 1
Max Local Fixed Sources (maxslc): 1
Max Contiguous CMR Cells (maxcnr): 27

Max Lines in Input Deck (maxlin): 320
Max | nputs vector w FIDO (maxarr): 204
Max FI DO Chars/Variable (nctliny: 133

PENTRAN VARI ABLE NAMES BY BLOCK:

BLOCK 1 - 12 Possi bl e:
ngeom ngroup isn nmatl ixcrs jycrs kzcrs decnpv | odbal tintut tol ngd nodadj

BLOCK 2 - 12 Possi bl e:
xmesh ixmed i xfine ymesh jymed jyfine zmesh kzned kzfine nmattp flxini mathng

BLOCK 3 - 10 Possi bl e:
lib legord nxtyp i hmiht ihs ihng chig nxcomt | egoxs

BLOCK 4 - 12 Possi bl e:
nprtyp nrdblk tolin tolout maxitr methit
nmet hac ncoupl ndneth nzonrb dtwrxw nquit

BLOCK 5 - 10 Possi bl e:
nsdef nscmsh ssnrm sref serg smag rkdef spacpf omegap scal sf

BLOCK 6 - 6 Possible:
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i bback ibfrnt jbeast jbwest kbsout kbnort

BLOCK 7 - 9 Possible:
nxspr ngeopr nsunpr neshpr nfdunp nsrcpr nsdunp nnatpr nadunp

>>> Scanning Data on Processor 1 of 1 <<

#### Scanning Block 1 Data on Processor 1 of 1 ####
ngeonr 3d

nodadj= 0 (forward/adjoint swtch)

ngr oup: 1 val ues read

ngroup(1l)= 3 (Total energy groups--current ru
ngroup(2)= 3 (G oup processor dinmension w ndow)
ngroup(3)= 0 (Converged groups from Restart)

isn= 8 (Sn level-symetric quad order)
nmat | = (Materials in problem
i XCcrs= (No. Coarse Meshes in x)

kzcrs=

2
3

jycrs= 3 (No. Coarse Meshes in y)
3 (No. Coarse Meshes in z)
0

| odbal = (auto-parallel |oad balance sw tch)
tincut= .0 (I'nactive wall mns cutoff)
tol ngd= 2. 0000E-01 (Multi-Grid transport convergence tol erance)

decnpv=Deconp Vector Priorities: Orega, G oup, Cel
1.00 .00 .00

#### Scanning Block 2 Data on Processor 1 of 1 ####

xnesh: 4 val ues read: (x coarse bounds)
0. 0O000OE+00 8. 0000E+00 1.6000E+01 2.4000E+01

i xfine: 27 values read: (x fine neshes)

4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4

i xnmed: 27 val ues read: (x nmedium neshes)

2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2

ynesh: 4 val ues read: (y coarse bounds)
0. 0O000OE+00 8. 0000E+00 1.6000E+01 2.4000E+01

j yfine: 27 values read: (y fine neshes)

4 4 4 4 4 4 4 4

4 4
4 4 4 4 4 4 4 4 4 4
4 4 4 4 4 4
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j ynmed: 27 val ues read:

2 2 2 2 2 2 2
2 2 2 2 2 2 2
2 2 2 2 2 2 2
znesh: 4 val ues read:

kzfi ne: 27 val ues read:
4 4 4 4 4 4 4
4 4 4 4 4 4 4
4 4 4 4 4 4 4
kzmed: 27 val ues read:
2 2 2 2 2 2 2
2 2 2 2 2 2 2
2 2 2 2 2 2 2
READ nnmattp: Coarse 1;

data to material scratch file:

READ nnmattp: Coarse
data to material scratch

READ nnattp: Coarse
data to material scratch

READ nmatt p: Coarse
data to material scratch

READ nmatt p: Coarse
data to material scratch

READ nmatt p: Coarse
data to material scratch

READ nmatt p: Coarse
data to material scratch

READ nnmattp: Coarse
data to material scratch

READ nmatt p: Coarse
data to material scratch

READ nnmattp: Coarse
data to nmaterial scratch

READ nnmattp: Coarse
data to material scratch

2;
file:
3;
file:
4;
file:
5;
file:
6;
file:
7,
file:
8,
file:
9,
file:
10;
file:
11;
file:

(y medi um neshes)

2

(z coarse bounds)
0. O0O0OOE+00 8. 0000E+00 1.6000E+01 2.4000E+01

2
2

2
2

(z fine neshes)

4
4

(z medi um neshes)

2
2

boxx.

boxx.

boxx.

boxx.

boxx.

boxx.

boxx.

boxx.

boxx.

boxx.

boxx.

93

4
4

2
2

64

64

64

64

64

64

64

64

64

64

64

4
4

2

2

nmesh

nmesh

nmesh

nmesh

nmesh

nmesh

nmesh

nmesh

nmesh

nmesh

nmesh

mat er i

mat er i

mat er i

mat er i

mat er i

mat er i

mat er i

mat er i

mat er i

mat er i

mat er i

a

a

a

a

a

a

a

a

a

a

a

specs read

specs read

specs read

specs read

specs read

specs read

specs read

specs read

specs read

specs read

specs read
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READ nnattp: Coarse
data to material scratch

READ nnmatt p: Coarse
data to material scratch

READ nnmattp: Coarse
data to material scratch

READ nnmatt p: Coarse
data to material scratch

READ nnmatt p: Coarse
data to material scratch

READ nmatt p: Coarse
data to material scratch

READ nnmattp: Coarse
data to material scratch

READ nnmatt p: Coarse
data to material scratch

READ nmatt p: Coarse
data to material scratch

READ nnmattp: Coarse
data to material scratch

READ nnmattp: Coarse
data to material scratch

READ nmatt p: Coarse
data to material scratch

READ nmatt p: Coarse
data to material scratch

READ nnmattp: Coarse
data to material scratch

READ nnmatt p: Coarse
data to material scratch

READ nnattp: Coarse

12;
file:

13;
file:

14,
file:

15;
file:

16;
file:

17,
file:

18;
file:

19;
file:

20;
file:

21;
file:

22;
file:

23;
file:

24;
file:

25;
file:

26;
file:

27;

boxx.

boxx.

boxx.

boxx.

boxx.

boxx.

boxx.

boxx.

boxx.

boxx.

boxx.

boxx.

boxx.

boxx.

boxx.

94

64

64

64

64

64

64

64

64

64

64

64

64

64

64

64

64

nmesh

nmesh

nmesh

nmesh

nmesh

nmesh

nmesh

nmesh

nmesh

nmesh

nmesh

nmesh

nmesh

nmesh

nmesh

nmesh

mat er i

mat er i

mat er i

mat er i

mat er i

mat er i

mat er i

mat er i

mat er i

mat er i

mat er i

mat er i

mat er i

mat er i

mat er i

mat er i

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

specs

specs

specs

specs

specs

specs

specs

specs

specs

specs

specs

specs

specs

specs

specs

specs

read

read

read

read

read

read

read

read

read

read

read

read

read

read

read

read

Appendix



data to

***WARNI NG Bl ock 2:

material scratch file:

Initial

in energy by chig in Block 3

f1xini

. 0000E+00
. 0000E+00
. 0000E+00
. 0000E+00
. 0000E+00
. 0000E+00

RPRRPRRRR

mat hng:
0 0
0 0
0 0

27 val ues read:

. 0000E+00
. 0000E+00
. 0000E+00
. 0000E+00
. 0000E+00
. 0000E+00

RPRRPRRRRP

1. 0000E+00
1. 0000E+00
1. 0000E+00
1. 0000E+00
1. 0000E+00

27 val ues read:

0
0
0

[eoNeoNe]

0
0
0

0 0
0 0
0 0

boxx.

ML

fluxes flxini weighted

(initial coarse

1. 0000E+00 1
1. 0000E+00 1
1. 0O000E+00 1.
1. 0000E+00 1
1. 0000E+00 1

(Coarse Mesh nediumgrid matl

0
0

#### Scanning Block 3 Data on Processor

i b=fil e:boxx.xs

(xsec lib source)

0 0
0 0
1 of

| egord=1 (Legendre order of cal cul ation)

| egoxs=1 (Legendre order of xsec library)

nxtyp=0 (cross section type)

i hme 8 (xsec table | ength)

iht= 3

(total xsec position)

ihs= 6 (in-group scatter xsec position)

mesh fl uxes)

. 0000E+00
. 0000E+00

0000E+00

. 0000E+00
. 0000E+00

1 ####

ihng= 0 (table marker of last n in n, ganma xsec)

chig for materi al

1 for each of

1. OO0OE+00 1. 0000E+00 1. 0000E+00

chig for materi al

2 for each of

1. OOOOE+00 1. 0000E+00 1. 0000E+00

nxcmt= 1

3 groups:

3 groups:

(No. xsec coment cards before natl xse

***WARNI NG Bl ock 3:

file:
boxx. xs

1 Conment

|l i nes/ xsec indicated for

Readi ng Bl ock 3 Cross Section Data on Processor
nxtyp 0: STANDARD form W THOUT Legendre Constants

Library fromFile:

READ xsecs:

READ xsecs:

boxx. xs
Mat eri al 1
Mat eri al 2

95

c)

1 of 1

setting)

cross section
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#### Scanning Block 4 Data on Processor 1 of 1 ####
ncoupl= 1 (Taylor projection coupling order)
nprtyp= 1 (problemtype)
nrdbl k= 0 (automatic Red-Bl ack subdomain switch)
tolin: 1 value read: (all coarse cell tolerances)
5. 000000E- 04
t ol out: 1 val ues read
tolout(1)= 5.000E-04 (outer iteration tolerance)
tolout(2)= 1. 000E+00 (tolout(1) nultiplier for med grid)
dt wrxw= . 9600 (nax DTW wei ght for adaptive)
maxitr: 1 val ues read
maxitr(1)= 50 (nmax inner/outer iterations)
maxitr(2)= 50 (keff inner iteration limt)

methit= 2 (source iteration nethod)

ndnet h: 27 val ues read: (Coarse Mesh Sn diff nethods)
2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2
nzonr b: 3 val ues read:
(Cell s/ Zone: Danpf: Skip: )
nzonr b= 27 .9900 0
net hac: 1 val ues read:
met hac(1)= 0 (rebal ance accel nethod)
met hac(2)= 0 (csda init O f=0/Poi nt =1/ Cosi ne=2)
nmet hac(3) = . 0000 (csda xcenter (0O=auto))
nmet hac(4) = . 0000 (csda ycenter (0O=auto))
nmet hac(5) = .0000 (csda zcenter (0O=auto))
met hac(6)= 2 (inner iterate use of csda)
methac(7)= 1 (outer iterate use of csda)

***\WARNI NG Bl ock 4: nquit; no nmaxi mum
#iters to stop a non-convergi ng group
--Using Default Value nquit=4

#### Scanning Block 5 Data on Processor 1 of 1 ####

nsdef : 1 val ues read: (source types)
0
nscnsh: 1 val ues read: (source Coarse Mesh nunbers)
14
sref: 3 total values read
sref--for source: 1 global sanpling reference pt (x y z):
0. 0O000OE+00 0. 0000E+00 0. 0000E+00
serg: 3 total values read
serg--for source: 1 energy (1..Q distribution

1. O0O00OE+00 0. 0O000E+00 0. 0000E+00
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smag: for sources 1 to 1

1. 0000E+00
Sour ce 1 spatial fine grid dist data:
Group 1 No. fine cells 64

***(Applies to all G oups)
spacpf--for Source: 1 Goup 1 nornalized fine cell probabilities:
1. 0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00
1. 0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00
1. 0000E+00 1. 0000E+00 1.0000E+00 1.0000E+00 1.0000E+00
1. 0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00
1. 0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00
1. 0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00
1. 0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00
1. 0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00
1. 0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00
1. 0000E+00 1. 0000E+00 1.0000E+00 1.0000E+00 1.0000E+00
1. 0000E+00 1. 0000E+00 1.0000E+00 1.0000E+00 1.0000E+00
1. 0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00
1. 0000E+00 1. 0000E+00 1.0000E+00 1. 0000E+00

***\WARNI NG Bl ock 5: Un-normalized fine spatial probability
di stribution detected in spacpf:
Sour ce 1 Goup 1 Fine Cell dist sum 6.4000E+01
Fi ne Spatial Nornalization DI SABLED
#### Scanning Block 6 Data on Processor 1 of 1 ####
i bback= 0 (bdy cond at surf normal to -Xx)
ibfrnt= 0 (bdy cond at surf normal to +x)
jbeast= 0 (bdy cond at surf normal to -y)
jbwest= 0 (bdy cond at surf normal to +y)

kbsout= 0 (bdy cond at surf normal to -2z)

kbnort= 0 (bdy cond at surf normal to +z)

#### Scanning Block 7 Data on Processor 1 of 1 ####
nxspr= 1 (xsec print in outputs)
nmatpr= 0 (Coarse Mesh naterial nmap output swtch)
ngeopr= 1 (geonetry print setting)
nsrcpr= 0 (source dist data output swtch)
nsunpr= 1 (Coarse Mesh sunmary print sw tch)

meshpr: 1 val ues read: (Coarse Mesh print settings)
0

nfdump= 1 (binary flux nonent dunp setting

nsdump= 0 (binary scal ar source dunmp swi tch)
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nadunp: 1 values read: (binary angular flux dunmp setting)
0

***\WARNI NG Bl ock 7: neshpr; 0 cells to output detailed nesh
Qut put Restricted.

5 WARNI NG(S) DETECTED
0 FATAL ERROR(S) DETECTED
| nput Conpl ete for Processor 1 of 1

Mappi ng Processors/ Deconposition G oups:
1 of 1 (Total) procs

GLOBAL PROCESSOR/ PROBLEM | NFORMVATI ON

Deconposi ti on Wi ght Vector (decnpv)

Angul ar: 1.00 (Angular Utilization: 1.000)
G oup: .00 (Group Utilization: 1.000)
Spati al : .00 (Spatial Uilization: 1.000)

Deconposition Priority Enphasis: Angul ar

PARALLEL VI RTUAL 3-D TOPOLOGY: 1 TOTAL Processor(s)

Deconposi ti on Tot al Processors Local |l y Tot al
Vari abl e Processed Al'l ocated Processed Percentage
Coarse Cells 27 1 27 100.
Energy G oups 3 1 3 100.
Di recti ons QOrega 80 1 80 100
(Ang Sweep Cctants) 8 1 8 100.
(Onegas/ Cct ant) 10 1 10 100.

Automati ¢ Load Bal ance Strategy: NONE (Sequential Assignhnent)
Red- Bl ack Col oring Strategy: NONE (Local Sequential Assignnent)

Parall el Max/Mn Load Ratio in Problem
Spatial Coarse Cells: 1.0000E+00
Energy G oups: 1. 0000E+00
Angul ar Sweep Cctants: 1. 0000E+00
Onegas/ Cctant: 1. 0000E+00

Bui | di ng Mesh on proc 1.
Bui | ding Materials on proc 1.

Locati ng/ Loggi ng Sources on proc 1.

Initializing Fluxes, flags on proc 1.

Integrating Fixed Sources on proc 1.

WARNI NG Group UPSCATTER Cross Secs Indicated

Entering Hi ronot o- Wenke G oup/ Sweep Routine on proc 1.
Initializing Multigrid Paranmeters on proc 1.

ImFirst Iteration Conplete G= 1 05/06/2000 05:34:10
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Imi= 1 G 1 Err=1.00E+00 C=
ImFirst Iteration Conplete G=
Imi= 1 G 2 Err=1.00E+00 C=
ImFirst Iteration Conplete G=
Imi= 1 G 3 Err=1.00E+00 C=
Imi= 2 G 1 Err=5.00E-01 C
Imi= 2 G 2 Err=6.95E-01 C
Imi= 2 G 3 Err=6.96E-01 C
Imi= 3 G 1 Err=5.26E-02 C
Imi= 3 G 2 Err=6.22E-01 C
Imi= 3 G 3 Err=6.42E-01 C
Imi= 4 G 1 Err=3.45E-03 C=
Imi= 4 G 2 Err=5.21E-01 C=
Imi= 4 G 3 Err=5.56E-01 C=
Imi= 5 G 1 Err=2.45E-04 C=
Imi= 5 G 2 Err=3.77E-01 C
Imi= 5 G 3 Err=4.22E-01 C
Imi= 6 G 1 Err=1.86E-05 C=
Imi= 6 G 2 Err=2.22E-01 C
Imi= 6 GG 3 Err=2.63E-01 C
Imi= 7 G 1 Err=2.31E-06 C=
Imi= 7 G 2 Err=1.10E-01 C
Imi= 7 G 3 Err=1.34E-01 C
I NNER LOOP COVPLETE on Processor
I NNER Medi um Gid COVWPLETE on ALL
1f i= 8 G 1 Err=7.42E+00 C=
1f i= 8 G 2 Err=4.66E+00 C=
1f i= 8 G 3 Err=5.41E+00 C=
1f i= 9 G 1 Err=5.03E-02 C
1f i= 9 G 2 Err=1.73E-01 C
1f i= 9 G 3 Err=1.80E-01 C
1f i= 10 G 1 Err=3.91E-03 C=
1f i= 10 G 2 Err=7.82E-02 C=
1f i= 10 G 3 Err=9.19E-02 C=
1f i= 11 G 1 Err=3.13E-04 C
1f i= 11 G 2 Err=3.38E-02 C=
1f i= 11 G 3 Err=4.18E-02 C=
1f i= 12 G 1 Err=2.41E-05 C=
1f i= 12 G 2 Err=1.40E-02 C=
1f i= 12 G 3 Err=1. 77E-02 C=
1f i= 13 G 1 Err=1.87E-06 C=
1f i= 13 G 2 Err=5.64E-03 C=
1f i= 13 G 3 Err=7.23E-03 C
1f i= 14 G 1 Err=6.41E-07 C
1f i= 14 G 2 Err=2.25E-03 C
1f i= 14 G 3 Err=2.89E-03 C=
1f i= 15 G 1 Err=2.31E-07 C
1f i= 15 G 2 Err=8.91E-04 C
1f i= 15 G 3 Err=1.15E-03 C=
1f i= 16 G 1 Err=2.30E-07 C=
1f i= 16 G 2 Err=3.52E-04 C=
1f i= 16 G= 3 Err=4.54E-04 C=

| NNER LOOP COVPLETE on Processor
INNER Fine Gid COWLETE on ALL Processors

Pr ocessor 1 of

Processor d obal d oba
Number Coarse Group

| 4 obal
Sweep

27. 1 SR=1.00 T=
2 05/06/ 2000 05:34:10
27. 1 SR=1.00 T=
3 05/06/ 2000 05:34:10
27. 1 SR=1.00 T=
1. 1 SR= .34 T=
25. 7 SR= .63 T=
21. 6 SR= .62 T=
1. 1 SR= .10 T=
27. 8 SR= .89 T=
27. 8 SR= .92 T=
27. 8 SR= .07 T=
19. 5 SR= .82 T=
25. 7 SR= .84 T=
19. 6 SR= .08 T=
7. 3 SR= .70 T=
9. 4 SR= .73 T=
9. 3 SR= .08 T=
25. 7 SR= .58 T=
1. 1 SR= .60 T=
3. 3 SR= .12 T=
1. 1 SR= .49 T=
19. 5 SR= .50 T=
1
Processors
23. 7 SR= .50 T=
25. 7 SR= .50 T=
25. 7 SR= .50 T=
26. 60 SR= .02 T=
24, 64 SR= .07 T=
26. 64 SR= .07 T=
23. 64 SR= .08 T=
27. 44 SR= .40 T=
27. 48 SR= .45 T=
27. 43 SR= .08 T=
27. 43 SR= .41 T=
27. 43 SR= .42 T=
27. 43 SR= .08 T=
27. 43 SR= .42 T=
27. 43 SR= .41 T=
27. 42 SR= .10 T=
27. 43 SR= .42 T=
27. 43 SR= .43 T=
1. 30 SR= .24 T=
27. 43 SR= .42 T=
27. 43 SR= .42 T=
24, 35 SR= .49 T=
27. 43 SR= .42 T=
27. 43 SR= .42 T=
10. 2 SR= .82 T=
27. 43 SR= .41 T=
27. 43 SR= .42 T=
1
1 DECOVPGCSI TI ON Mappi ng
Sweep File
Onega CQut put . proc
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N s
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. Os
. 0s

. Os
. 3s
. 3s
. 3s
. 9s
. 9s
. 9s
. Os

Os
3s
3s
3s
3s
3s
3s
3s
3s
3s
3s

5s
5s
5s
3s
3s
3s
9s
9s
9s
4s
4s
4s
8s
8s
8s
2s
2s
2s
4s
4s
4s
7s
7s
7s
Os
Os

. Os



1
1
1

Processor
Number

Pr ocessor
Nunber

Pr ocessor
Nunber

Pr ocessor
Nunber

Processor
Nunber

Pr ocessor
Nunber

Pr ocessor
Nunber

Pr ocessor
Nunber

Pr ocessor
Nunber

C 1
C 1
C 1
d oba
Coar se
C 2
C 2
C 2
d oba
Coar se
C 3
C 3
C 3
d oba
Coar se
C 4
C 4
C 4
d oba
Coar se
C 5
C 5
C 5
d oba
Coar se
C 6
C 6
C 6
d oba
Coar se
C 7
C 7
C 7
d oba
Coar se
C 8
C 8
C 8
d oba
Coar se
C 9
C 9
C 9
d oba
Coar se

o
o
3
<
N

Qut put . proc

Appendix



Pr ocessor
Nunber

Pr ocessor
Nunber

Pr ocessor
Nunber

Pr ocessor
Number

Pr ocessor
Nunber

Processor
Nunber

Pr ocessor
Nunber

Pr ocessor
Nunber

Processor
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1 c 19 G 1 S1-8 0O01-10 boxx 1
1 Cc 19 G 2 S1-8 0O01-10 boxx 1
1 c 19 G 3 S1-8 0O01-10 boxx 1

Processor Gdobal dobal do
Nurmber Coarse Group Swe

1 C 20 G 1 S1-8 0O1-10 boxx 1
1 C 20 G 2 S1-8 0O1-10 boxx 1
1 C 20 G 3 S1-8 0O1-10 boxx 1
Processor dobal dobal dobal Sweep File
Number Coarse G oup Sweep Onega Qut put . proc

1 Cc 21 G 1 S1-8 0O1-10 boxx 1
1 Cc 21 G 2 S 1-8 0O1-10 boxx 1
1 Cc 21 G 3 S1-8 0O1-10 boxx 1
Processor dobal dobal dobal Sweep File
Number Coarse G oup Sweep Onega CQut put . proc

1 Cc 22 G 1 S1-8 0O1-10 boxx 1
1 Cc 22 G 2 S1-8 0O1-10 boxx 1
1 Cc 22 G 3 S1-8 0O1-10 boxx 1
Processor dobal dobal dobal Sweep File
Number Coarse G oup Sweep Onega CQut put . proc

1 Cc 23 G 1 S1-8 0O1-10 boxx 1
1 Cc 23 G 2 S1-8 0O1-10 boxx 1
1 Cc 23 G 3 S1-8 0O1-10 boxx 1
Processor dobal dobal dobal Sweep File
Nurmber Coarse G oup Sweep Onega CQut put . proc

1 C 24 G 1 S 1-8 0O1-10 boxx 1
1 C 24 G 2 S1-8 0O1-10 boxx 1
1 C 24 G 3 S1-8 0O1-10 boxx 1
Processor dobal dobal dobal Sweep File
Nurmber Coarse G oup Sweep Onega Qut put . proc

1 C 25 G 1 S 1-8 0O1-10 boxx 1
1 C 25 G 2 S1-8 0O1-10 boxx 1
1 C 25 G 3 S1-8 0O1-10 boxx 1
Processor dobal dobal dobal Sweep File
Number Coarse G oup Sweep Onega Qut put . proc

1 C 26 G 1 S 1-8 0O 1-10 boxx 1
1 C 26 G 2 S 1-8 0O 1-10 boxx 1
1 C 26 G 3 S 1-8 0O 1-10 boxx 1

Processor dobal dobal dob
Number Coarse Group Swee

1 c 27 G 1 S1-8 0O 1-10 boxx. 1

1 c 27 G 2 S 1-8 0 1-10 boxx. 1

1 c 27 G 3 S1-8 0O 1-10 boxx. 1
1 Dunping binary flux nonents to file: boxx.f1l
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