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A ROADMAP AND DISCUSSION OF ISSUESFOR PHYSICS
ANALYSES REQUIRED TO SUPPORT PLUTONIUM
DISPOSITION IN VVER-1000 REACTORS

R. T. Primm IIl and J. D. Drischler
Oak Ridge National Laboratory

A. M. Pavlovichevand Y. A. Styrine
Russian Research Center “Kurchatov Institute”

ABSTRACT

The purpose of thisreport isto document the physics analyses that must be performed to
successfully disposition weapons-usable plutonium in VVER-1000 reactors in the Russian
Federation. The report isa document to support programmatic and financial planning. It does
not include documentation of the technical procedures by which physics analyses are performed,
nor are the results of any analyses included. The scope of the discussion includes all plutonium
processing operations, beginning with the disassembly of weapons parts and ending with the
transportation of irradiated VVER-1000 mixed-oxide (MOX) fuel assembliesto their final
destination and al parts of the fuel cycle between these two end points. Discussionislimited to
analysesthat are to be performed in the areas of reactor physics (statics and kinetics), criticality
safety, radiation transport and shielding, decay heat generation, and source term generation for
accident consequence analyses (source terms for environmental analyses). Three goals—safety,
disposition rate, and cost, in that order—are the motivations for all the physics analyses discussed
in thisreport. Anayses to support licensing documents are regarded as an inherent part of the
safety goal.

1. ABRIEFHISTORY OF THE FISSILE MATERIALS
DISPOSITION PROGRAM

In September 1993, Presidents Clinton and Y eltsin established a policy to commit the United
States (U.S.) and the Russian Federation (R.F.) to seek to eliminate, where possible, the accumu-
lation of stockpiles of highly enriched uranium and plutonium. The U.S. Government initiated the
Fissile Materials Disposition Program (FM DP)—administered by the Office of Fissile Materias
Disposition (OFMD) in the U.S. Department of Energy (DOE)—to perform a comprehensive
review of long-term alternatives for plutonium disposition, taking into account technical, nonpro-
liferation, environmental, budgetary, and economic considerations. In April 1996, a Nuclear
Safety Summit was held in Moscow, Russia. Participants at the summit agreed that the spent fuel
standard, which makes weapons-usable plutonium as inaccessibl e as reactor-grade plutonium in
spent, low-enriched uranium (LEU) fuel, should be adopted as the goal for plutonium disposition.
Summit participants al so endorsed a technology program composed of small-scal e equipment and
process demonstrations. Almost concurrently, ajoint U.S./R.F. commission, commonly called the
Holdren/Velikhov Commission, concluded that disposition of weapons-usable plutonium in



light-water reactors should be one of the technological options pursued by both the Russian
Federation and the United States. On January 14, 1997, the DOE announced the formal Record of
Decision (ROD) for the Storage and Disposition of Weapons Usable Fissile Materials. The
disposition strategy allows for immobilizing plutonium in glass or ceramic forms and burning
plutonium as mixed-oxide (MOX) fuel in existing reactors. On April 1, 2000, the OFMD became

a part of the Office of Nuclear Nonproliferation at DOE.

With the plutonium disposition mission defined to include the irradiation of MOX fuel in
reactors, the U.S. and R.F. experts began the task of identifying facilities in Russia to accomplish
the mission. The U.S. officials were informed that the safety review process in Russia stipulates
that all fuel cycle facilities and reactors must submit a request-for-operation to the Russian regu-
latory authority, Gosatomnadzor (GAN). This request is then subjected to technical review,
evaluation, and eventual approval or rejection. The U.S. officials were also informed that the use
of MOX fuel in VVER-1000 reactors, and the fuel cycle to support such use, would require new
requests-for-operation to be filed with GAN. (The review process is summarized in Appendix A.)

The OFMD has established policy decisions that influence the MOX fuel cycle promoted by
the DOE for implementation in Russia. The OFMD has specified that it will consider funding
modifications to the physical plant of VVER-1000s to enhance the disposition rate of plutonium.
The OFMD has also stipulated that the disposition of plutonium in Russia may slightly lag the
disposition of plutonium in the United States. The current disposition schedule proposed by
Duke/Cogema/Stone & Webster (DCS)—the consortium responsible for MOX fuel fabrication
and irradiation services in the United States—is to initiate irradiation of lead assemblies in 2004,
begin initial loading of an equilibrium batch of MOX fuel in 2008, and complete the irradiation
mission in 2022.

For the Russian Federation to meet the U.S. disposition schedule with only those reactors in
current operation (six VVER-1000s and one fast reactor, the BN-600), each VVER-1000 must
disposition 400 kg of plutonium per reactor year. The R.F. schedule contains an additional “front-
end” step not present in the U.S. disposition program. Lead MOX fuel pins would be irradiated in
LEU assemblies starting in 2003 for 2 years. While these pins are being destructively analyzed,
lead test assemblies (LTAS) are loaded to a VVER-1000 in 2005 and irradiated for two, 1-year
cycles. Allowing a year for destructive investigation of pins from the LTAs, loading of MOX
assemblies to one of the six VVER-1000s could begin in 2009. Fueling of all six reactors should
be achieved by 2015. The six VVER-1000s and the BN-600 will have a combined disposition rate
of 3.7 MT/year of plutonium. To disposition 34 MT of plutonium will require 9 years and will be
completed shortly following the completion of the U.S. program in 2022.

Several discussions between the U.S. and R.F. governments have been held regarding the
disposition of more than 34 MT of plutonium although a U.S./R.F. agreement has not been
approved. To accomplish this goal would require modifications to the current VVER-1000 fuel
assembly design and likely require modifications to the reactor.

At the beginning of fiscal year 1997 (October 1996), the Water Reactors-1 Task was estab-
lished to provide technical support to Russia in the area of physics analyses for MOX-fueled
VVER-1000s. The initial mission of this task was to verify and validate computational methods
for the analysis of MOX fuels in VVER-1000s. (Verification is the process of confirming that the
algorithms encoded in computer programs work as intended; validation is the process of com-
paring computer programs and their associated nuclear data libraries to measured physics
parameters.) The U.S. role was to provide technology transfer of MOX data to Russia and to per-
form independent analyses and reviews of Russian neutronics calculations. The initial goal
established in 1996 will be reached when GAN issues Certification Certificates for Russian reac-
tor physics computer programs that are to be used for the analyses of MOX fuels.

Approximately 1 year following the initiation of Water Reactors-1 Task (late 1997), both the
U.S. and R.F. task members jointly agreed to expand the scope of the task to include design of
lead test/use assemblies and review of the design of the equilibrium (sometimes designated as



mission) fuel assembly—the equilibrium fuel design task being the primary responsibility of a
joint French/German/Russian group. These assembly designs were to be formulated on the basis
that no changes or improvements were to be made to the existing VVER-1000 reactor infrastruc-
ture. This programmatic stage, including the verification and validation design studies mentioned
previously, eventually came to be called Phase 1 of the Russian disposition program of the
FMDP. This phase is expected to be completed at the loading of the first LTAs into the Balakovo
reactor unit 4 (2004).

Verification and validation studies required that both the U.S. and R.F. staffs analyze the
same problems and data. Otherwise, there would have been no mechanism for certifying to GAN
that Russian computer programs and data were acceptable for analyzing MOX fuels. As the joint
studies progressed to the design of fuel assemblies, the two staffs did not replicate all studies. The
R.F. staff performed parametric studies to provide data for decisions regarding an assembly
design. These parametric studies were seldom replicated by the U.S. staff. Tentative designs,
however, were evaluated by both staffs.

During fiscal year 2000, DOE requested that Russian reactor physicists propose options for
increasing the plutonium disposition rate (Phase 2). Suggestions received from Russia will be the
basis of joint U.S./R.F. studies during future fiscal years. The U.S. staff will not duplicate the
work of the Russian staff, but both staffs will work as a unified team to examine all identified
options. Phase 2 is expected to be completed by 2010.

The Russian Federation has designated the Russian Research Center “Kurchatov Institute”
(RRC-KI) and the Institute for Physics and Power Engineering (IPPE) as the institutes to work
with the United States in the implementation of weapons-grade plutonium disposition. Generally,
RRC-KI has assumed the lead role in at-reactor-site physics analyses, and the IPPE has contrib-
uted significantly in away-from-reactor fuel cycle analyses. Oak Ridge National Laboratory
(ORNL) has served and will serve as an independent technical reviewer—the need for such is a
requirement of GAN—and will provide confirmatory analyses to GAN. As requested, ORNL will
also provide technical advice to DOE on Russian reactors and fuel cycle facilities.

Once Russian computer programs and nuclear data libraries are certified by GAN, the need
for technical support in the reactor physics area from ORNL staff is planned to slowly decline.
ORNL staff will continue to coordinate with R.F. staff in the design of the Phase 1 and Phase 2
assemblies and in evaluating any modifications to the reactor plant. However, after the first equi-
librium loading (Phase 1 of the program), fuel management calculations (determining which
assembly goes where in the reactor core) will likely be done exclusively in Russia with no con-
firmation performed in the United States unless requested by Russia or by DOE.

The plan for nuclear engineering analyses to support away-from-reactor facilities is vague. It
will be shown that extensive criticality safety, shielding, decay heat, and environmental source
term analyses are required. How these analyses are to be integrated with other engineering disci-
plines and programmatic goals is currently unclear.






2. PURPOSE AND SCOPE OF THIS REPORT

The purpose of this report is to document the physics analyses that must be performed to
successfully disposition weapons-usable plutonium in VVER-1000 reactors in the Russian Fed-
eration. The report is a document to support programmatic and financial planning. Consequently,
with the exception of the listing of computer programs and nuclear data sources in Appendix B,
the report does not include documentation of the technical procedures by which physics analyses
are performed, nor are the results of any analyses included. (Appendix B also contains a brief
description of the current database of measurements available to the Russian Federation for vali-
dation and the uses of these measurements.)

The scope of the discussion in this document includes all plutonium processing operations
beginning with the disassembly of weapons parts and ending with the transportation of irradiated
VVER-1000 MOX fuel assemblies to their final destination and all parts of the fuel cycle
between these two endpoints. Discussion is limited to analyses that are to be performed in the
areas of reactor physics (statics and kinetics), criticality safety, radiation transport and shielding,
decay heat generation, and source term generation for accident consequence analyses (source
terms for environmental analyses).

The primary goal of all physics analyses is to certify the safety of all operations related to
the disposition of weapons-usable plutonium. Analyses are performed to support the fuel cycle
facility operations and also for presentation to and review by the Russian regulatory agency,
GAN (see Appendix A). Under the constraint of safety, the second most important goal is to dis-
position the amount of plutonium that has been mutually determined by the U.S. and R.F. gov-
ernments within the amount of time that has also been determined by mutual agreement. The third
goal, in order of importance, is the achievement of the first two goals at minimal cost. Though
third in priority, obtaining an economic optimum requires considerably more resources (e.g., a
greater number of studies, a greater depth of study, a greater number of calculations) than
achieving the first two goals. Equipment protection from excessive radiation, design of facilities
for ease of maintenance, and minimization of the quantity of construction materials and labor
costs are all examples of studies that would not impact safety but that would, if performed
improperly, yield significant economic penalties.

These three goals—safety, disposition rate, and cost, in that order—are the motivations for
all the physics analyses discussed in this report. Analyses to support licensing documents are
regarded as an inherent part of the safety goal.






3. METHODOLOGIES FOR ANALYSES

All physics analyses rely on one or more of four methodologies: (1) reference to a nuclear
facility of similar design that is either currently operating or has operated in the past, (2) solutions
from handbooks or other reference literature, (3) measurements and/or experiments, or
(4) solution of the problem through the use of digital computer programs (these programs usually
require electronic data “libraries” of measured physical constants). The fourth method is the one
being developed for MOX fuels under the Water Reactors-1 Task.

Implementing nuclear facility designs from existing or previously operated facilities can
satisfy all three goals of the physics analyses (see Sect. 2). Unfortunately, neither the United
States nor the Russian Federation has ever constructed and operated MOX fuel fabrication facili-
ties (FFFs) of the size needed to meet the disposition goals of the FMDP. European facilities of
sufficient size have been constructed but not for weapons-grade plutonium. Furthermore, the
design and operational aspects of European facilities are proprietary and not currently available to
U.S. and R.F. personnel.

Note that the Russian Federation currently operates a fast reactor fuel production line. Con-
sequently, some experience with plutonium operations may be transferable to a VVER-1000 fuel
production facility without the need for additional physics analyses. However, since fast reactor
fuels have a plutonium content of 20 wt % and VVER-1000 MOX would have a plutonium con-
tent of approximately 5 wt %, it is unlikely that facilities based on the fast reactor production
facility designs would be economically optimal.

Handbooks, American and international standards, and other reference materials are used in
safety assessments of facility designs because they provide expert, peer-reviewed advice quickly
to both experienced and inexperienced engineers. Use of reference publications facilitates educa-
tion on safety-related issues and enables acceptance of facility designs and operations by regula-
tory authorities. However, reference publications are extremely limited in the number of configu-
rations studied. Many European publications are proprietary; the extent of configurations and
materials studied is not known and is not available to the United States or the Russian Federation.

It is generally not possible to extrapolate to new, uninvestigated configurations based on
previously published work. Because MOX fabrication plants exist in Europe, publications rele-
vant to nuclear safety analyses exist. However, for some applications, such as the startup of a
reactor, expected values of startup physics tests are not available for fuels that have never been
placed in the reactor in question (significant quantities of fresh MOX fuel have not been placed in
a VVER-1000). When applicable and available, reference publications achieve the FMDP goal of
safety, but disposition rate and economic goals may not (and likely would not) be achievable.

Implementation of the MOX fuel cycle in Russia could be accomplished by conducting
experiments or in-situ facility measurements. These procedures, along with analytic calculations
(commonly called “hand calculations™), were utilized in the United States before the advent of
digital computers. For fuel cycle facilities, measurements in critical facilities are required. These
measurements are time-consuming—requiring several years to complete—and would cost mil-
lions of dollars. In-situ measurements at the reactor would lead to a gradual introduction of MOX.
The time to reach a one-third core loading would be greater than reliance on computational
methods because measurements of reactor performance must be made each time the loading of
MOX (number of MOX assemblies) in the reactor core is increased. For the FMDP, the goal of
safety could be obtained, but the disposition rate and economic goals would likely not be
achieved.

Computer programs offer the most versatile method of performing physics analyses. Essen-
tially any geometric configuration and material composition can be evaluated. The analyst is not
limited to facility designs or configurations previously constructed, nor is the analyst constrained
to the simplistic geometries or the limited materials choices frequently found in handbooks or



reference literature. Safety, disposition rate, and minimum cost goals can all be met through the
use of computational methods.

American and Russian computer programs and data libraries that were selected in 1996 for
inclusion in the FMDP are listed in Appendix B. The list in Appendix B is expected to be revised
in the future. Technology will evolve during the course of the FMDP, and new programs and
libraries or improved versions of existing programs will likely be added to the list. Analyses to
date that have been performed with these programs are documented in Refs. 1-18.

Computer programs and data libraries must be verified and validated with experimental data
that are shown to be applicable to the system under study. When available and applicable, exist-
ing facility operations and analyses can also be sources of data for validation.

Verification, in the context of neutron physics computer programs, is the process of ensuring
that the software solves the problem that was intended to be solved. That is, the encoded algo-
rithms produce an accurate approximation to the true solution for the problem. Verification of
neutron physics software should be performed independently of the nuclear data that are input to
the analyses. Consequently, physicist-created computational benchmarks frequently provide the
simplest or “cleanest” mechanism for verifying computer programs.

Validation is the process of demonstrating the degree to which software and associated data
libraries needed as input to the software meet their requirements—the level of accuracy for the
systems modeled. In the context of neutron physics software, any biases in computer
program/data library combinations are identified by comparison of calculated to experimentally
measured physics parameters.

This report includes brief, qualitative discussions of a variety of experimental measurements
that are used to validate selected computer programs/data library combinations. Verification and
validation studies may be costly and time-consuming and sometimes must be repeated if com-
puter hardware or software is updated.



4. WEAPONS PARTS PROCESSING

The initial step in the fuel cycle is to convert plutonium metal parts into plutonium oxide.
Weapons parts will first be converted to metal ingots. These ingots will be chemically dissolved
in nitric acid and then precipitated as plutonium oxide powder. The powder will be dried, milled,
and poured into metal canisters. A large number of canisters will likely be stored, temporarily, in
a vault until transportation to the FFF.

A schematic diagram of the proposed, American plutonium conversion facility is shown in
Fig. 1. The concept for the American facility differs from that of the Russian one because non-
aqueous processes will be utilized. Nevertheless, Fig. 1 provides an overview of the processes
required to convert feed material into oxide product.

Because a weapons parts disassembly and conversion facility (WPDCF) will contain opera-
tions that will be conducted with pure plutonium, the designs and operations of existing R.F.
facilities may be immediately applicable to the FMDP. The components of any new facilities
could be adapted from existing facilities and satisfy the criteria of safety and economics. (In fact,
the realignment of former weapons facilities to serve conversion roles for the FMDP would be
highly desirable from a nonproliferation policy viewpoint.) Increases to a reference disposition
rate could be achieved by parallel production lines. Criticality safety, shielding, and radionuclide
source term analyses could all be “grandfathered” from current designs.

New studies would be performed only if existing facilities or associated documentation was
judged unacceptable to GAN. In anticipation that some existing facilities would not meet the cur-
rent regulatory requirements of GAN, the scope and content of new facility design studies are
summarized below by discipline.

4.1 CRITICALITY SAFETY

Analysts would receive from facility designers the engineering drawings and the description
of the chemical process—termed material flow sheets—for the WPDCF. While normal operating
conditions will be defined from material flow sheets and the safety of nhormal operations con-
firmed by nuclear analysts, credible abnormal conditions must be identified by the criticality
safety analyst working in conjunction with process designers. A probabilistic risk assessment
methodology is an excellent mechanism for determining credible abnormal conditions, but expert
opinion may be equally as accurate. After computational programs and libraries have been vali-
dated, computational models of the facilities must be prepared, and the facility must be shown to
remain subcritical during normal and credible abnormal operations. In some instances, handbook
values of process equipment dimensions may be used in lieu of computations.

Criticality safety benchmarks—needed for validation of computational methods—that would
be applicable to this facility design should be those in which plutonium is the only actinide. Criti-
cal configurations with plutonium metal and with plutonium oxide are required. A range of mod-
eration ratios should be examined in the experimental configurations because while some of the
processes will be nonaqueous, accidents or abnormal conditions may result in the introduction of
water or other hydrogeneous materials to the operations. Both single-unit and array critical con-
figurations will be required because there will be storage configurations at both the “head” and
“back” ends of the facility. For aqueous operations in the facility, single-unit and array configu-
rations of containers filled with plutonium nitrate solution will be required as benchmarks. A
range of moderation ratios should be considered.

After subcriticality during normal and credible abnormal conditions has been assured, criti-
cality accidents must be postulated and defined; the consequences must be evaluated through the
use of computational methods or by reference to handbooks or standards if appropriate. The
results of the studies of postulated criticality accidents will be used to assess facility design



ORNL 2000-1285 EFG

—_— > ||| || >

Clean Oxide,
Imguifle IC()jxide E.
alide . . e
: Dissolution Purification Oxalate
Salts/Oxides Precipitation
72
—_— Oxide From )
Clean Metal, Impure Metal Calcine
Impure Metal, \
& Pu Alloys (AL

Oxide From > &)

Clean Metal

*Hydride-Oxidation

l | - [
élloy Reactor Fuel =D :
xide Reactor Fuel Decladding/ @ 1

Disassembly )
Oxides Calcine

B —» — > — g

CL)J)/(IF;L:_} Filtration

Uranium
Separation

Dissolution

* Same process and equipment used in Pit Conversion Process

Note: This figure is not meant to convey the actual process flow of the plutonium conversion facility,
only to show the kinds of process steps that will be used.

Fig. 1. Process flow description of an American plutonium conversion facility.

10



(i.e., adequate shielding and effluent confinement) and adequacy of safety alarm systems, and
they will provide source terms for environmental consequence analyses.

4.2 SHIELDING

The definition of radiation sources for normal operation will have as an initial basis the
facility description and process flow sheets mentioned previously. However, it is a common
occurrence that the principal contributors to the radiation source term are trace isotopes or process
impurities that may not appear on the process flow sheet. Consequently, the shielding analyst
must first define the reference shielding source terms based on the process flow sheet, examina-
tion of similar facilities, expert opinion, and computational methods (zero-dimensional, irradia-
tion and depletion programs). The reference source terms for normal, credible abnormal, and
postulated accident conditions must be specified. While some of the computational methods used
for shielding source term generation are the same as those used for criticality safety, frequently
the important radiation source nuclides for shielding concerns are not the same nuclides that are
most important for assessing criticality safety.

Either computational methods or reference literature may be used to perform the radiation
transport analyses. Computational methods require that validation studies be performed but usu-
ally yield a more economical facility design than reliance on reference literature. The selection of
shielding experiments for validation of computer programs would depend on the type of radia-
tion, the energy spectra of the radiation sources, and the construction materials for the facility.
The most penetrating radiations are neutrons and gamma rays; however, gamma ray interactions
with matter are generally easier to calculate accurately than neutron interactions. The most diffi-
cult shielding problems are the calculations of radiation streaming through cracks or small gaps
formed between bulk components. Also, calculation of “deep penetration” problems can be chal-
lenging. Deep penetration refers to the transmission of either neutrons or photons through physi-
cally large distances in solids. Knowledge of the facility design is a prerequisite to the assessment
of the difficulty of the shielding problems.

4.3 ENVIRONMENTAL SOURCE TERMS

The estimations of radionuclide source terms for normal, credible abnormal, and accident
conditions are usually achieved by using computational tools. These tools are frequently the same
as those used for criticality accident and shielding calculations. However, the nuclides of interest
are usually different than those of interest to criticality safety and shielding analysts. The degree
to which a radionuclide is an environmental hazard is a function of the activity, type and energy
of radiation, and the degree to which the nuclide interacts with the environment (e.g., how readily
it is absorbed by the body).

For the shielding studies, the initial activity for this task would be to develop a reference
document that identifies the nuclides of interest. The analyst must consider the reference flow
sheet, the identified credible abnormal and accident conditions from the criticality safety studies,
the identified radiation source terms from the radiation study, and biological “uptake” data from
reference literature. Once the reference document for normal, credible abnormal, and accident
conditions has been completed, the computation of the source terms is usually a modest task.

4.4 DECAY HEAT SOURCE TERM AND OTHER ANALYSES

Because only unirradiated materials will be processed, decay heat is expected to be insig-
nificant. However, a related quantity, the amount of americium and other alpha emitters in the
processed plutonium oxide, is important. Alpha activity results in helium generation, and if the
metal containers holding the finished product are kept for a long time, an excessive internal gas
pressure may result in failure of the plutonium oxide containment.
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5. TRANSPORTATION OF OXIDE POWDER TO THE
FUEL FABRICATION FACILITY

If the FFF and the WPDCF were at the same location, there would be no consideration of
transportation of oxide powder. If the facilities were at different locations, then a transportation
package would have to be designed and constructed. Nuclear analyses would be a part of the
design process.

5.1 CRITICALITY SAFETY

The analyst will have to define normal and credible abnormal conditions based on the pro-
posed mechanical design of the transportation package. The package design is an input to the
analysis and must specify all materials and geometry. Likewise, reference and credible abnormal
plutonium oxide container descriptions must be supplied to the safety analyst. Either computa-
tional methods or reference literature could be employed for analyses. Should computational
methods be used, validation studies performed to support the design of a storage array at the
WPDCF would likely support these analyses as well.

5.2 SHIELDING

For criticality safety, a complete description of the plutonium oxide container (including
specifications of all impurities and trace isotopes) and the transportation package must be pro-
vided to the shielding analyst. Because the fuel is fresh, the most important shielding considera-

tion is likely to be the neutron dose from the package. Either computational methods or reference
literature could be employed for analysis.

5.3 ENVIRONMENTAL SOURCE TERMS

The identification of the environmental source term should be relatively simple. The pluto-
nium oxide itself is the source term. However, particular attention should be paid to specification
of trace nuclides that have significant biological impacts. These should have been identified in the
source term analyses for the WPDCF.

5.4 DECAY HEAT SOURCE TERM AND OTHER ANALYSES

These analyses are the same as those for the storage array for the WPDCF.
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6. THE MOX FUEL FABRICATION FACILITY

The fabrication facility will receive plutonium oxide powder from the WPDCF. The chemi-
cal and mechanical processes that will be performed inside the MOX FFF are shown in Fig. 2.

Canisters of plutonium oxide will be unloaded from the transportation package and stored.
The storage area is likely to be very similar to, if not the same as, the design for the WPDCF.
Natural or depleted uranium will be received and stored. Uranium and plutonium oxides will be
blended. It is expected that a “master mix” of 30 wt % plutonium oxide and 70 wt % uranium
oxide will be prepared.

The master mix will be mechanically processed, and then additional uranium oxide will be
added to achieve the plutonium contents specified by the reactor physics analyses (discussed sub-
sequently). The MOX powder will then be pressed into pellets. The pellets will be sintered in a
furnace (parallel lines may be in operation to achieve the necessary throughput) and sent to an
intermediate storage area. Pellets will then be loaded to pins, and the pins sent to a storage area.
Pins will then be loaded to assemblies, and assemblies sent to a storage area.

Common to all of the nuclear analyses are a facility description document and a “materials
flow” description for each of the processes shown in Fig. 2. It is also necessary to define the
operation of the facility, but experience shows that operating procedures are usually not available
when nuclear analyses are requested for a new facility. Consequently, it will likely be the respon-
sibility of the nuclear analyst to work with the facility designers to tentatively establish some
operating procedures. In fact, the definition of normal, credible abnormal, and accident conditions
will require that operating procedures be defined. As was mentioned earlier, the shielding and
environmental source term analyses will require specifications for trace nuclides that may not
appear in the materials flow documents. The addition of the source terms must be a cooperative
effort between safety analysts and facility designers.

The facility description, materials flow, and operating procedure documents need not and, in
fact, should not be the final versions. The nuclear analyses described subsequently should be an
integral part of the facility design process.

6.1 CRITICALITY SAFETY

Because the initial processes in the MOX FFF are the same as those for the fast reactor fuel
cycle (i.e., storage of plutonium oxide and subsequent blending to 30 wt % plutonium in MOX
and breeder blanket plutonium with a high fissile content), it is possible that the MOX FFF design
could be approved by referencing an existing facility that supports fuel fabrication for the BN-
600. However, the remainder of the fuel assembly fabrication processes do not have existing
counterparts in either the United States or the Russian Federation (due to the size of the opera-
tions). Applicable European data almost certainly exist but are proprietary and may be limited to
high240Pu content fuels. Application of reference publications may be possible, but, as stated
previously, they are unlikely to yield the most efficient and therefore cost-effective design. Most
likely, computational methods will be employed to perform the criticality safety analyses.

After definition of the normal, credible abnormal, and accident conditions as noted previ-
ously, safety analyses will be performed with verified and validated computational methods. A
variety of benchmarks will be required for computer code certification. For the design of storage
and blending operations, the benchmarks would be the same as those previously described for the
WPDCEF. Intermediate storage of MOX powder (production of a master mix that is subsequently
diluted with uranium oxide), MOX pellet production, and fuel rod fabrication operations will
utilize single-unit MOX critical configurations as benchmarks. Fuel rod assembly into bundles
and bundle storage will require interacting array data for MOX fuel pins. The verification of
computer programs for the postulated criticality accidents will require a consensus of expert
opinion.
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6.2 SHIELDING, ENVIRONMENTAL SOURCE TERMS, DECAY HEAT SOURCE
TERM, AND OTHER ANALYSES

Because only fresh fuel will be processed in the fabrication facility, analysis and benchmark
needs in these areas will be essentially the same as those for the WPDCF. Identification of the
isotopics of the plutonium and uranium to a high degree of accuracy (for some nuclides, parts-
per-billion concentration levels must be known) is a requirement. Likewise, the quantities of trace
nuclides in the MOX must be very well known if unnecessary conservatism in facility design—
and therefore unnecessary cost—is to be avoided.
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7. TRANSPORTATION FROM THE FUEL FABRICATION
FACILITY TO THE REACTOR SITES

Shipping casks similar to those currently used for the transport of LEU fuel will be required
for transport of MOX fuel from the fabrication facility to the reactor site.

7.1 CRITICALITY SAFETY

There is an economic advantage to using an existing shipping cask to transport MOX fuel
assemblies from the fabrication facility to the reactor sites. Initial studies performed jointly by
U.S. and R.F. analysts indicate that, under normal operation, Russian casks can safely accommo-
date MOX fuel assemblies (see Ref. 7). Studies of credible, abnormal conditions of MOX assem-
blies in casks have not been conducted. Possible abnormal conditions must be defined and studied
with verified and validated computational methods.

7.2 SHIELDING, ENVIRONMENTAL SOURCE TERMS, DECAY HEAT SOURCE
TERM, AND OTHER ANALYSES

Because the fuel being transported is unirradiated, radiation sources will be quite small, and
decay heat generation will be insignificant. Because of spontaneous fission and alpha-n reactions,
the neutron source from MOX fuel is considerably greater than that of LEU fuel. Neutron shields
that are not needed for LEU transport may be required for MOX transport. Potential accidents and
corresponding releases of fuel to the environment must be identified. However, the radiological
source terms for the environmental consequences analyses will be derivable from the fresh fuel
specifications.
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8. MOX OPERATIONS AT THE REACTOR SITE AND
IRRADIATION IN THE REACTOR

At the reactor sites, MOX fuel must be unloaded from the shipping casks and transferred to a
fresh fuel storage area. At each refueling outage, spent MOX assemblies must be removed from
the reactor core and placed into a spent fuel storage pool. Assemblies within the core are shuffled.
Then fresh MOX assemblies are brought from the storage area and loaded into the reactor core. It
is possible that irradiated assemblies will be removed from the reactor, stored in the spent fuel
storage pool for some period of time, and then reinserted in the reactor. Irradiation intervals in
VVER-1000s are 12 months.

Fresh fuel storage locations are currently licensed for LEU fuel. Storage of the MOX fuel
will require reanalysis with computational methods. Validation of these methods requires criti-
cality data for water-moderated arrays of MOX pins. These same data should be applicable to
certifying some of the physics parameters of MOX fuel in the reactor core. However, configura-
tions that are to be used for certifying reactor physics codes for reactor core design must include
accurate measurement of the relative power generation among the pins that compose the critical
configuration.

Certification of the reactor core configuration will require critical experiments (either new
experiments, proprietary data from Europe, or in-situ measurements at the reactor) in which the
reactivity worth of the reactor control materials is verified, the effect of temperature from cold-to-
operating conditions on reactivity can be verified, and the effect of moderator voiding can be
verified. Some data regarding the composition of the fuel as a function of burnup (both actinides
and fission products) should be procured and analyzed, though the establishment of critical con-
figurations may not be feasible. Data for these burnup applications have been procured for MOX
fuels in Germany through the use of on-site gamma-scanning equipment for LTAs. Such equip-
ment could potentially be used in Russia.

If cores are to be partially loaded with MOX assemblies, critical experiment benchmarks
containing both LEU and MOX fuel pins will be required. Some of these data exist and have
already been analyzed. Flux and power measurements at the LEU-MOX interfaces will be espe-
cially important.

Spent fuel storage can be licensed based on the same data as for fresh fuel storage. However,
it should be possible to economically justify procuring critical experiment data that would allow
the incorporation of burnup-credit analyses in the spent fuel storage design. Some applicable
burnup credit data may be available from European organizations.

8.1 REACTOR PHYSICS

Because MOX fuel has never been loaded to a VVER-1000, fuel assemblies must be
designed. This is a resource-intensive procedure requiring many person-years of effort. The goal
in designing a fuel assembly is to have a uniform power density among all pins in the assembly
during the lifetime of the assembly. Economic factors (reactor fuel cycle costs) lead the designer
to maximize the length of time that the fuel assembly remains in the reactor. Available experience
with MOX fuel in France only extends to a burnup of 50,000 MWd/MT. The MOX fuel irradia-
tion should not exceed this value until fuel qualification tests are performed.

Concurrent with assembly design is the development of optimal fuel loading patterns for the
reactor core. Fresh and irradiated fuel assemblies can be loaded to the reactor core in an almost
infinite number of patterns. However, only a few of these patterns (perhaps only one) will simul-
taneously meet all safety-related criteria at minimum cost. The search for this optimal loading
pattern is a significant effort.

Policy goals influence the fuel cycle and, consequently, the fuel assembly design. Rapid dis-
position of plutonium dictates that the program be initiated as rapidly as possible and, therefore,
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spend as little time as possible on improvements or modifications to VVER-1000 reactors. As a
consequence, the number of MOX assemblies in a reactor core at any given time could not
exceed approximately one-third of the total number of assemblies in the core. It is the policy of
the Russian Federation that the spent fuel standard for MOX fuel is interpreted as maximizing the
energy recovered from a given amount of plutonium. (This policy differs from that of the United
States where the utility is only required to achieve a burnup of 20,000 MWd/MT in the MOX
assemblies.) These criteria determine the maximum MOX loading fraction for the core and that,
in turn, establishes the fuel assembly design for Phase 1 of the program. Phase 2, by definition,
allows for changes to the reactor structure, and as a consequence, a different assembly design will
likely be considered.

To illustrate the differences in assembly designs that might arise from the two phases, con-
sider the number of types (“type” meaning fissile fraction of plutonium in the MOX) of pluto-
nium pins that might be fabricated. In Phase 1, a MOX assembly will be loaded next to an LEU
assembly in a reactor. To produce a uniform power distribution, multiple pin types will be loaded
in the assembly (probably three or four different types of pins with varying fissile fractions). In
Phase 2, a VVER might be fully loaded with MOX assemblies, thereby maximizing the pluto-
nium disposition rate. In an “all-MOX” core, a MOX assembly would have fewer pin types
(perhaps only one or two) and would likely have a different pitch (i.e., distance between centers
of pins in the assembly) from the Phase 1 assembly. (In addition, for all-MOX cores, the control
rod design may have to be modified because of its reduced reactivity worth in the MOX assem-
bly. This might require adding more control rod assemblies or changing the absorber material.)

Economic constraints from other parts of the fuel cycle also impact assembly design. Fuel
fabrication plant operators prefer to minimize the number of types of fuel pins that they must
manufacture. A large number of fuel pin types is more expensive than a small number. There is
also a strong economic incentive to maintain existing fuel assembly designs—existing fuel pin
diameter, clad thickness, and rod pitch. Yet these dimensions were optimized for an LEU fuel
cycle, and optimal parameters for MOX fuel would likely be different.

Once policy and infrastructure constraints are established, the design of a fuel assembly is an
iterative procedure requiring reactor physicists to work with thermal-hydraulics analysts, fuel per-
formance analysts, and reactor control specialists. The core loading configuration must be ana-
lyzed as a part of the fuel assembly design process. Safety limits related to departure from nucle-
ate boiling must be demonstrated to be acceptable. Adequate shutdown margin must be
preserved. Temperature and void reactivity coefficients must be shown to be acceptable.

After the “equilibrium” or “mission” fuel is designed, then an LTA design must be prepared.
The MOX LTA will be irradiated in an “all-LEU” core configuration; therefore, the LTA may be
different in some ways from the mission fuel. It may be desirable to have the LTA incorporate
larger plutonium loadings than the mission assembly design in order to bound possible opera-
tional occurrences expected for mission fuel. Current Russian mission fuel designs call for 6 to
12 uranium-gadolinum (U/Gd) pins to be included in the MOX assembly for reactivity control
and power flattening. Consequently, the LTA should also include U/Gd pins to be as representa-
tive of mission fuel as possible.

The expected MOX fraction in the mission core will significantly impact the design of the
LTA. An LTA for a one-third MOX core would likely be very similar to the mission fuel design.
However, an LTA for an all-MOX core would have to be different from the mission fuel assem-
bly design because of edge power-peaking problems. To simulate the interface conditions
expected to exist in an all-MOX core, two or perhaps three MOX LTAs would have to be placed
side-by-side. An LTA for a one-third MOX core would require only one LTA per symmetric core
fragment because the normal operating condition for a MOX assembly in a one-third core would
be to be adjacent to an LEU assembly.

Before the design procedure for a MOX assembly can begin, computer programs and data
libraries must be verified and validated with applicable data. Some of these studies have been
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completed and are documented in Refs. 1-18. Because the assembly design process is iterative, it
may be difficult to determine which data are applicable. The validation process itself is iterative.
The initial validation study must be performed, the assembly design studies conducted, and then
the validation study reviewed. It may be determined that additional validation experiments and/or
calculations are required. These may, in turn, lead to revisions in the assembly design that may
again necessitate a review of the applicability of the validation study. At some point in time, the
process converges.

The Russian Federation has no critical experiment data for MOX fuel pins. Applicable data
have been supplied by the United States. Data are known to exist in Europe but are proprietary
and have not been supplied to the Russian Federation. The Russian Federation has stipulated that
no new critical experiment data are required for insertion of LTAs into a VVER-1000. No deci-
sion has been made regarding the need for additional critical experiments for loading a one-third
MOX core into a VVER-1000. If experiments are required, they would likely be performed in the
SUPR facility at the IPPE.

Accurate assessment of the reactor operation requires benchmarking of reactor physics
methodologies for the calculation of power densities for small spatial regions. The magnitude and
location of the “hot spot” in a fuel pin, fuel assembly, or the entire reactor core must be identified
because these values will ultimately determine the maximum operating power for the reactor. Hot
spot assessments require knowledge of three-dimensional flux and power distributions in addition
to fuel thermal properties and heat transfer coefficient calculations. This data need differentiates
reactor physics from the criticality safety studies performed to certify the fresh and spent fuel
storage areas.

Reactor physicists must certify that computational methodologies are accurate over a range
of temperatures (i.e., from room temperature to reactor operating temperatures and beyond for
accident analysesyhe analyst must be able to predict the time-dependent performance of the
neutron flux (and therefore the power of the reactor) under both normal fuel configurations and
credible abnormal changes in the physical conditions of the reactor (e.g., inadvertent control rod
withdrawal, cold water ingress to the core, and turbine trip). Prediction of reactor response under
transient conditions (e.g., pump startup or shutdown, turbine trip, depressurization accidents,
stuck control rods, wrongly identified fuel types, and erroneous log-rate signals leading to control
rod withdrawal) frequently requires more time and resources than the static design calculations.
These studies must be carefully coordinated with thermal-hydraulics analysts. In fact, in certain
situations, the physics analyses must be directly coupled to the thermal-hydraulics analyses.

8.2 CRITICALITY SAFETY

Fresh and spent fuel storage areas at VVER-1000 reactors are designed for the safe storage
of LEU fuel. Calculations are required to determine if existing configurations are safe for MOX
assemblies. If existing storage arrays are determined to have an inadequate margin of safety, then
facilities must be redesigned and reconstructed. In addition to certifying that the facilities are
adequately safe for MOX fuel, the consequences of potential criticality accidents must be evalu-
ated. The time-dependent behavior of a criticality accident must be postulated and studied to
ensure that plant personnel are adequately shielded and that criticality alarms are placed in suffi-
cient numbers in proper locations.

Critical experiment data for benchmarking computer programs and data libraries will include
data for arrays of MOX fuel pins and for mixtures of MOX and LEU fuel. While reactor physi-
cists must certify that computational methodologies are accurate over a range of temperatures
(i.e., from room temperature to reactor operating temperatures and beyond for accident analyses),
generally, criticality safety calculations only require “room temperature” data. Criticality excur-
sions generally self-terminate prior to significant changes in the system temperature.
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8.3 SHIELDING

MOX fuel is considerably more radioactive than LEU fuel. While the absolute values of the
neutron and gamma dose rates remain quite small, the large relative difference between MOX and
LEU values (a factor of 1000) may result in violations of some regulatory limits. Modifications to
the physical plant might be required.

Inside the reactor vessel, during irradiation, the neutron leakage spectra is harder (energy of
the escaping neutrons is higher) than that for an LEU assembly. The impact of this higher-energy
neutron flux on both in-core components and on the reactor pressure vessel will have to be
assessed. Computational methods will be required for these analyses.

For spent MOX fuel storage, shielding considerations should be the same as those for LEU
fuel, albeit the neutron source for MOX will be greater than for comparably irradiated LEU.

Some reanalysis will be required, but the additional work will be relatively small.

8.4 ENVIRONMENTAL SOURCE TERMS

Actinide and fission product inventories in a MOX-fueled VVER will be significantly dif-
ferent from those of an LEU core. These inventories will have to be calculated for beginning- and
end-of-life and will be dependent on the fraction of the assemblies in the core that are MOX.

8.5 DECAY HEAT SOURCE TERM AND OTHER ANALYSES

The decay heat source term for a MOX-fueled core (or a single MOX assembly) will differ
from that of an LEU core. The decay heat source for a MOX core in the reactor should be lower
than that of an LEU core, but the decay heat source for multiyear-cooled MOX assemblies will be
higher than that for comparably cooled LEU assemblies. For the reactor core, the source will
depend on the number of assemblies in the core that are MOX. For an individual assembly, the
value will depend on the fuel management scheme employed.
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9. THE AWAY-FROM-REACTOR SPENT FUEL OPERATIONS

The away-from-reactor spent fuel operations include transportation of spent MOX fuel. Sig-
nificant safety-related differences exist between the spent LEU and spent MOX fuels. The neu-
tron source strength for MOX fuels will be higher than for comparably irradiated LEU fuels.
Fission product inventories in spent MOX fuel differ from spent LEU with some hazardous
fission product inventories being lower but other hazardous actinide inventories being higher.
While existing spent fuel transport casks may be acceptable for MOX fuel, safety analyses will
have to be repeated for MOX fuel because of the differences in source terms. Types of analyses
will be similar to those noted for fresh MOX fuel.

Note that it may be possible to load MOX assemblies in the center of the shipping cask with
LEU assemblies loaded in the external positions. The LEU assemblies would then shield the
MOX assemblies so that dose rates external to the shipping cask would be essentially the same as
those for a cask containing all LEU assemblies.
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10. OTHER PHYSICS STUDIES
10.1 ALTERNATIVE DISPOSITION RATE STUDIES

Policy decisions within the FMDP are still being made. It is currently uncertain whether the
U.S. government will urge modifications to VVER-1000s to enhance plutonium throughput or
will urge the participation of other countries with VVER-1000s in the FMDP. There is a congres-
sional mandate to link the U.S. and Russian programs in terms of quantity of plutonium disposed.
If policy decisions are made which impact the fraction of assemblies in the VVER core that will
be MOX, then the entire design process (with the exception of validation and verification studies)
must be replicated.

10.2 INPUT TO ECONOMIC EVALUATIONS

An output of reactor physics studies is the expected annual demand for MOX and LEU
assemblies. These parameters are very important input to economic studies of the cost of pluto-
nium disposition in Russia. Furthermore, these values must be known to properly size MOX fuel
fabrication plants, to plan for transportation shipments, and to assess storage requirements at
reactor sites.

10.3 TECHNICAL SUPPORT TO DISPOSITION IN CANDU REACTORS

One option for plutonium disposition is to manufacture Canadian deuterium-uranium
(CANDU) reactor MOX fuel elements in Russia and irradiate the material in Canadian reactors.
The physics effort for such a fuel cycle is comparable to that required for disposition in VVERS
in Russia. Responsibility for these physics analyses is assigned to Canada.

10.4 TECHNICAL SUPPORT TO DISPOSITION IN FAST REACTORS

Fast reactor fuel elements will be manufactured in Russia and irradiated in the fast reactor,
BN-600. The physics analysis effort for such a fuel cycle is less than that required for disposition
in VVERs in Russia because the BN-600 was originally designed to be fueled with MOX.
Responsibility in the United States for these physics analyses is assigned to staff at Argonne
National Laboratory.

10.5 TECHNICAL SUPPORT TO DISPOSITION IN GAS-COOLED REACTORS
One option for plutonium disposition is to manufacture gas-cooled reactor fuel elements in

Russia and irradiate the material in a Russian modular gas-cooled reactor. Responsibility in the
United States for these physics analyses is assigned to General Atomics.

27



28



11. A COMPREHENSIVE ROADMAP FOR PHYSICS ANALYSES

As a tool for program managers, a set of “roadmaps” has been created to show the extent of
the FMDP. The “Level 1” roadmap, provided in Appendix C, is intended to provide a large-scale
view of the entire program. In this section, a detailed dissection of selected Level 1 tasks (boxes)
is provided. This expansion of Level 1 tasks is provided as Fig. 3 and is termed a “Level 2+”
roadmap. This roadmap is based on data presented in Appendix D. The Level 1 tasks are identi-
fied in the level “A” boxes in Fig. 3. The assembly of the multiple pages that compose Fig. 3 into
a single sheet is accomplished by matching the diamond connectors at the edges of the pages.

Figure 3 is termed a Level 2+ roadmap because it includes multiple programmatic adminis-
trative levels. A separate task within the FMDP led to the development of a draft “Level 2" road-
map, which is contained in Appendix E. A future task for program management is to integrate the
Level 1, 2+, and 2 roadmaps.
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Appendix A. GOSATOMNADZOR REVIEW PROCESS

The first interaction between the FMDP and GAN in the physics area will be the certifica-
tion of Russian computer programs and nuclear data for the analyses of MOX fuels (both the
safety of the fuel cycle and the analyses of the reactor). This certification is marked by the issu-
ance of a Certification Passport. The contents of this passport are shown in Fig. A.1. Current
plans call for a joint U.S./R.F. submission to GAN in mid-2001 of all necessary analyses to sup-
port issuance of Passports for the Russian computer programs and nuclear data libraries that are
noted in Appendix B.

The procedure for code certification follows the organization structure of GAN that is shown
in Fig. A.2. The “Experts” noted at the base of the organization structure will include individuals
from the Kurchatov Institute, IPPE, and other organizations. Details of the certification procedure
are shown in Fig. A.3.

ORNL 2000-1271 EFG
* Name of the code

e Hardware

* Operational system

* Code author(s) — name(s) and organization

* Main user (applicant)

* The problems solved by code

* Reactor type

* Reactor regimes

* Restrictions

* Permitted values of the reactor (installation) parameters
* Accuracy of calculations

* Methods involved

* Databases (libraries) used

* Users that have the permission to use the code
¢ Auxiliary information

» Official experts approved by commission

Fig. A.1. Certification passport contents.
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ORNL 2000-1272 EFG
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Center

Bank of Codes
and Documents
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Commission Divisions

Thermo- o Strength and S~
; Radiation Buildin
Neutronics Hydraulics Salfetly Strain, Design StrlLJJIctlljrgs
and Accidents Mechanics
Experts

Fig. A.2. Arrangement of codes certification.
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ORNL 2000-1273 EFG

Code User 1

* Request for the code certifying

Code Author 2

* Preparing the verification report
* Preparing the draft passport
* Preparing the code and documentation for testing and depositing in certification center

Certification Center 3

¢ Checking the documentation
* Testing the code
* Depositing the code and the documentation

Commission Division 4

* Preliminary evaluating the code and verification report
* Evaluating necessary volume and tasks of examination
* Nominating experts

Experts 5

* Making examination of the verification report
» Making proposals for passport

Commission Division 6

* Considering the results of examination
» Formulating the passport taking into account the results of examination

Certification Commission 7

* Considering the results of examination and division proposals
* Approving the certification and passport content

SEC 8

¢ |ssuing and delivering the passport to the code author

Certification Center 9

* Depositing the materials of certification and passport copy

Gosatomnadzor 10

» Checking the use of only certified codes in the calculations of nuclear installation's safety

Fig. A.3. Certification procedure.
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Appendix B
COMPUTER PROGRAMS, DATA LIBRARIES, AND USES

Table B.1 provides descriptions of the physics programs and data libraries that are being
used for analyses in the FMDP. Table B.2 provides a description of the measurements and
computational benchmarks that have been analyzed in Russia and the areas of application for
these measurements.

Table B.1. Nuclear methods and data to be validated

U.S. Libraries/Computer Russian Libraries/Computer

Usage Programs Programs
Nuclear data libraries SCALE ENDF-V Point, 44, ABBN-90, 93
199, and 238 group librarie8¥IMS
HELIOS ENDF/B-VI MCUDAT
libraries

Nuclear data processing NJOY (point data), AMPX ABBN, CONSYST
(point data or pin cell),
SCALE (pin cell), HELIOS
(2D assembly collapse),
WIMS-4D and WIMS-7 (2D
assembly collapse)

Criticality safety, fuel KENO-Va, KENO-VI, MCNP MCC, MCU, MCNP,
assembly and reactor CONKEMO
core physics parameters
(Monte Carlo method)

Fuel assembly physics  HELIOS, WIMS-4D and -7, TVS-M, TRIANG
parameters (deterministic DIF3D, VENTURE, DORT
methods)

Reactor core physics DIF3D, VENTURE, NESTLE BIPR, PERMAK, TRIANG
parameters (deterministic

methods)
Fuel management NESTLE, FORMOSA BIPR, PERMAK
Thermal-hydraulic data RELAP properties library Russian properties library,
library RELAP library
Thermal-hydraulic/ RELAP DYNAMICA, RELAP,
transient analysis TECH-M
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Table B.2. Database for Russian code verification

Effects of reactivity Absorption efficiency
Verification data Fuel Fuel Keff | Power Xe and | CPC |Burnable uGd Isotopic Kinetic | Verifiable Year of
type |geometry distribution | goron Temperature| Doppler Sm rods poison composition parameters| code |deliverables
poisoning| (boron) | (boron) fuel
Critical experiments
RFUASF;RC KL A (Latt, Hex 0 0 0 0 0 MTPB 99
Hungary-RU, ZR-6 U Hex a O 1] 1] ] 1] MTP 99
Czechia-RU, LR-0 9) Hex g ] 0 g MTP 99
InLtétl?andbook of ECSBE, = sq 0 M 99
In|_t|.ol-r:1andbook of ECSBE, P/U Hom 0 M 99
US, ESADA P/IU | Sq O O M 99
US, SAXTON PIU [Sq O O O M 99
OECD, VENUS-2 PIU | Sq O O O M 00
OECD, KRITZ PlU  |Sq O O O M 0?
RU, BFS(IPPE) P/U | Hex O O M 0?
RU, SUPR(IPPE) P/U | Hex O O O O O 0 0 O MTP 0?
Calculational benchmarks
RU/US, Cell U Hex ° ° ° ° ° ° ° MT 97
RU/US, Cell P Hex . ° ° ° ° ° ° MT 97
RU/US, PWR FA P Sq ° ° ° ° ° ° . ° M 97
RU/US, VVER FA U Hex L o ° ° ° ° ° ° ° MT 98
RU/US, VVER FA P Hex L o ° ° ° ° ° ° ° MT 98
RU/US, 7 VVER FAs U/P Hex o o g 0 0 0 [J [J MT 98
RU/Fr/iGerm, VVER FA ) Hex [J [ [J [J [J d [ [J [J [J [J MT 99
RU/Fr/iGerm, VVER FA P Hex [J [ [J [J [J [J [ [J [J [J [J MT 99
RU/Fr/iGerm, 7 VVER FAs |U/P Hex [J [ [J [J [J [J [ [J MT 99
OECD, BWR, FA P Sq o [ o o o M 99
OECD, PWR, Cell, FA P Sq ° O a ° M 00
RlIJ:/XSS 7and 19 VVER u/p Hex ° ° ° ° ° ° ° ° ° ° ° MTPB 00
RU/US, VVER-1000, Core | U/P Hex ° ® ° ° ° ° ® ° ° ° TPB 01
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Table B.2. (continued)

Effects of reactivity

Absorption efficiency

Verification data Fuel Fuel Keff | + Power Xe and | CPC |Burnable UGd Isotopic Kinetic | Verifiable Year of
type |geometry distribution | goron Temperature| Doppler sm rods poison composition parameters| code |deliverables
poisoning| (boron) | (boron) fuel
NPP data
RU, VVER-1000 U Hex [ [ [ [ [ [ [ [ [ TPB 00
RU, VVER-440 U Hex o d o o o o o TPB 00
RU, VVER-1000, MOX LTA [U/P Hex ° d TPB 0?
RU, VVER-1000, 1/3 MOX | U/P Hex ° ° ° ° ° ° . ° ° TPB 0?
Postirradiation analysis
US, Yankee Atomic U Sq [ MT 99
RU, VVER-1000, FA U Hex d ° MTPB 99
RU, VVER-440, FA U Hex d o MTPB 99
US, BWR (Quad City), FA |U/P | Sq ° M 99
US, PWR, FA U Sq o M 00
RU, VVER-1000, U/Gd Rods U/Gd | Hex ° MTPB 01
RU, “MIR,” Experim. Rods P — [ M 0?
RU, VVER-1000, MOX LTA [U/P Hex d ° MTPB 0?
RU,VVER-1000, 1/3 MOX | U/P Hex d o MTPB 0?

Note: The following abbreviations are used in Table B.2:

B—BIPR Code

FA—fuel assembly
Hex—triangular lattice of fuel
Hom—homogeneous system
M—MCU Code
P—PERMAK Code
P—plutonium fuel

rods

P/U—Dboth plutonium and uranium fuel elements are presented in the system

Sg—square lattice of fuel rods
T—TVS-M Code
U—uranium fuel

0?—the date of the verification studies to be performed is not decided

O —studies on the fresh fuel

e —studies of parameters depending on the burnup
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e-a

ID WBS | Task Name

L ' Technical Cooperation Agreement

2 ? Basic Regulatory Documents

3 21 Regulatory documents for VVER-1000 with MOX Fuel Available

4 * Plutonium Conversion

2 * MOX Fuel Fabrication For BN-600

# ®* MOX Fuel Fabrication VVER-1000

7 5.1 Preliminary MOX Fuel Properties for Safety Analyses Available

8 5.2 MOX Fuel for Pre-SUPR Critical Experiments Available

9 53 LTAs Available

10 54 MOX Fuel for SUPR Critical Experiments Available

11 55 MOX Fuel Properties for Safety Analyses Available

12 5.6 MOX Fuel Available (Phase 1 of Mission)

13 5.7 Additional MOX Fuel Available (Phase 2 of Mission)

" ® VVER-1000 Reactors

15 61 Determine Programmatic Goals, Requirements and Assumptions
16 6.1.1 Upgrading of the Branch Comprehensive Program of WG Plutonium Disposition in VVER-1000
17 6.1.2 Development of Russian Nuclear Material Disposition Program Logic ( ROADMAPs, Gantt Charts )
18 6.2 Preliminary Studies and R&D Works

19 6.2.1 Perform Reactor Physics and Analytical Work

20 6.2.1.1 Upgrading, Verification and GAN Certification of Computer Codes

21 6.2.1.1.1 Neutronics Codes for Calculation of VVER core with MOX Fuel

22 6.2.1.1.1.1 Verification and Certification of the MCU/ORIGEN-S precise code

23 6.2.1.1.1.1.1 Critical Experiments with VVER-type UOX Fuel ("?" RRC KI, ZR-6, LR-0)

24 6.2.1.1.1.1.2 Critical Experiments with U and Pu Fuel from International Handbook of ECSBE
25 6.2.1.1.1.1.3 US Critical Experiments with MOX Fuel ( SAXTON, ESADA)

26 6.21.1.1.14 European Critical Experiments with MOX Fuel ( OECD - VENUS-2, KRITZ))

27 6.2.1.1.1.15 Calculational Benchmarks ( US, France, Germany, OECD )

28 6.2.1.1.1.1.6 Postirradiation Data of PWR and BWR Fuel ( UOX and MOX)

29 6.21.1.1.1.7 Preparing the Verification Reports

30 6.2.1.1.1.1.8 Certification of MCU/ORIGEN-S code for MOX Fuel Calculations in GAN

31 2.1.1.1.1.8.1 Prepare the Documentation for Certification and submit it to GAN Certification Center
32 2.1.1.1.182 Examination of the Documentation by Experts and Certification Commission
33 2.1.1.1.1.8.3 Scientific and Engineering Center Issue the Code Certificate (License)

34 6.2.1.1.1.1.9 Additional Verification of the MCU/ORIGEN-S precision code
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35 2.1.1.1.1.91 Russian Critical Experiments with MOX Fuel at IPPE Facility (Pre-SUPR)

36 2.1.1.1.1.9.2 Russian Critical Experiments with MOX Fuel at SUPR Facility

37 2111193 Postirradiation Data of MOX LTA

38 21.1.1.1.94 Postirradiation Data of Mission MOX Fuel Assembly

39 6.2.1.1.1.2 Verification and Certification of the RRC Kl engineering code package (TVS-M,BIPR,PERMAK Codes)
40 6.2.1.1.1.2.1 Critical Experiments with VVER-type UOX Fuel ("?" RRC KI, ZR-6, LR-0)

41 6.2.1.1.1.2.2 Operational Data of VVER with UOX Fuel

42 6.2.1.1.1.2.3 Postirradiation Data of VVER Fuel (UOX)

43 6.2.1.1.1.24 Calculational Benchmarks ( MCU/ORIGEN, US, France, Germany )

44 6.21.1.1.25 Preparing the Verification Reports

45 6.2.1.1.1.2.6 Certification of the RRC Kl engineering code package in GAN RF

46 2.1.1.1.26.1 Preparing the Documentation for Certification and sending it to Certification Center
47 21.1.1.26.2 Examination of the Documentation by Experts and Certification Commission

48 2.1.1.1.26.3 Scientific and Engineering Center Issue the Code Certificate

49 6.2.1.1.1.2.7 Additional Verification of the RRC Kl engineering code package

50 2111271 Russian Critical Experiments with MOX Fuel at SUPR Facility

51 2111272 LTAs Operational Data

52 2111273 Postirradiation Data of MOX LTA

53 2111274 Operational Data Mission MOX Fuel Assembly operational Data

54 2111275 Postirradiation Data of Mission MOX Fuel Assembly

55 6.2.1.1.1.2.8 New Certification of the RRC Kl engineering code package in GAN RF

56 2.1.1.1.2.81 Preparing the Documentation for Certification and sending it to Certification Center
57 2.1.1.1.282 Examination of the Documentation by Experts and Certification Commission

58 2.1.1.1.28.3 Scientific and Engineering Center Issue the Improved Code Certificate

59 6.2.1.1.1.3 Upgrading and verification 3-D neutron-kinetic codes

60 6.2.1.1.1.3.1 Verification NOSTRA Code

61 6.2.1.1.1.3.2 Verification BIPR8-KN Code

62 6.2.1.1.2 Codes for accident analysis

63 6.2.1.1.21 TRAP Package ( GIDROPRESS)

64 6.2.1.1.2.2 Certification of RALAP5 code in GAN

65 6.2.1.1.2.2.1 Prepare the Documentation for Certification and submit it to GAN Certification Center
66 6.2.1.1.2.22 Examination of the Documentation by Experts and Certification Commission

67 6.2.1.1.2.2.3 Scientific and Engineering Center Issue the Code Certificate

68 6.2.1.1.2.3 Develop, Verify and Certify Combined 3-D Neutronics and Thermal Hydraulics Code

69 6.2.1.1.2.31 Develop Combined BIPR8-KN and RELAP5 Code

70 6.2.1.1.2.3.2 Verification of Combined BIPR8-KN and RELAP5 Code, including Balakovo-4 Tests
71 6.2.1.1.23.3 Preparing the Verification Reports
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72 6.2.1.1.2.34 Prepare the Documentation for Certification and submit it to GAN Certification Center
73 6.2.1.1.2.35 Examination of the Documentation by Experts and Certification Commission
74 6.2.1.1.2.36 Scientific and Engineering Center Issue the Code Certificate (License)

75 6.2.1.1.3 Codes for criticality safety Calculations ( IPPE Codes, MCU Code)

76 6.2.1.1.3.1 Russian Critical Experiments with Uranium

77 6.2.1.1.3.2 Critical Experiments with U and Pu Fuel from International Handbook of ECSBE

78 6.2.1.1.3.3 US Critical Experiments with MOX Fuel ( SAXTON, ESADA)

79 6.2.1.1.34 Calculational Benchmarks ( US, France, Germany, OECD )

80 6.2.1.1.3.5 Preparing the Verification Report

81 6.2.1.1.4 Code for analysis of Radiation Characteristics ( IPPE Codes )

82 6.2.1.1.4.1 Calculational Benchmarks ( US, France, Germany )

83 6.2.1.1.5 Code for Evaluating of MOX Fuel Rods Performance ( VNIINM, RRC KI Codes)
84 6.2.1.1.5.1 Calculational Benchmarks on MOX Fuel Properties

85 6.2.1.2 Experimental MOX Fuel Studies at Russian Critical Facilities

86 6.2.1.2.1 Development of Russian Programm on Critical Experiments

87 6.2.1.2.2 Critical Experiments on Pre-SUPR Facility

88 6.2.1.2.3 Critical Experiments on SUPR Facility

89 6.2.1.3 Calculational analysis of experiments at MIR reactors

90 6.2.2 Preliminary studies of LTAs

91 6.2.2.1 LTA Physics analyses

92 6.2.2.1.1 Physics Design of LTA with ~100 MOX pins (Island-type LTA)

93 6.2.21.1.1 Assembly-Level Parametric LTA Investigations

94 6.2.2.1.1.2 Neutronic Calculation of VWER-1000 Core with 3 LTAs with ~100 MOX pins

95 6.2.21.1.3 Final Report on ~100 MOX pin LTA physics Design

96 6.2.2.1.2 Physics Design of All MOX pin LTA without Burnable Poisons

97 6.2.21.2.1 Assembly-Level Parametric LTA Investigations

98 6.2.2.1.2.2 Neutronic Calculation of VVER-1000 Core with 3 All MOX Pin LTAs

99 6.2.2.1.2.3 Final Report on All MOX Pin LTAs

100 6.2.2.1.3 Physics Design of All MOX pin LTA with Uranium- Gadolinium Fuel as Burnable Absorbers
101 6.2.2.1.3.1 Assembly-Level Parametric LTA Investigations

102 6.2.2.1.3.2 Neutronic Calculation of VVER-1000 Core with 3 LTAs

103 6.2.2.1.3.3 Final Report on All MOX pin LTA with Uranium- Gadolinium Fuel as Burnable Absorbers
104 6.22.1.4 Generation of LTA Kinetic Input to Transient Analyses

105 6.2.2.2 Safety Analyses VVER-1000 with LTAs

106 6.2.2.2.1 Generation of Kinetics Parameters

107 622211 Review Documentation/Decision on Physics Parameters

108 622212 Preliminary LTA Assembly Design Kinetics Parameters
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109 6.2.2.21.3 Final LTA Kinetics Parameters/Update RELAP5
110 6.2.2.2.2 Steady State Thermal Hydraulic LTA Analysis
111 622221 Preliminary Report on LTA Analysis
112 622222 Final Report on LTA Analysis
113 6.2.2.2.3 Report Defining Transients to be Studied
114 6.2.2.2.3.1 Initial Transient Definitions for LTA/MOX
115 6.2.2.2.3.2 Refined List of Transients for LTA/MOX
116 6.2.2.2.4 Create Balakovo Specific RELAP5 Model
117 6.2.2.2.41 Preliminary Balakovo RELAP5 Model (LTA)
118 6.2.224.2 Detailed Balakovo RELAP5 Model (LTA)
119 6.2.2.2.5 Modify Balakovo Specific TRAP (GIDROPRESS) Model
120 622251 Preliminary Balakovo Model (LTA)
121 622252 Detailed Balakovo Model (LTA)
122 6.2.2.2.6 Perform Transient Analysis
123 6.2.2.26.1 RELAP5 Model Runs for Initial Transients (LTA)
124 6.2.2.26.2 RELAP5 Model Runs With for Refined Transients (LTA)
125 6.2.2.26.3 Evaluate Model and Perform Generic RELAP5 Analysis
126 622264 Licensing code runs for initial transients (LTA)
127 6.2.2.26.5 Licensing code runs for refined transients (LTA)
128 6.2.2.2.6.6 3-D Neutronic calculations for reactivity induced transients (LTA)
129 6.2.2.3 Criticality and Radiation Safety Analysis for transportation and storage of LTAs at NPP
130 6.2.2.3.1 Description of Transportation and Storage of LTAs at Balakovo NPP
131 6.2.2.3.2 Nuclear safety calculations of LTAs fuel storage and transportation
132 6.2.2.3.3 Calculation of Radiation characteristics of fresh and burnt-up LTAs
133 6.2.24 Development of Input Data for LTA Fabrication
134 6.2.2.5 Development of Reactor/NPP Modifications for LTAs Introduction
135 6.2.25.1 In-Core Measurements System
136 6.2252 Fresh and Spent Fuel Storage and Transportation at NPP
137 6.2.253 Facility for Fuel Inspection in Fuel Storage
138 6.2254 Equipment for Fuel Clad Hermetice Control
139 6.2255 Equipment for Coolant Activity Control
140 6.2.3 Preliminary studies of VVER-1000 with 1/3 MOX Fuel
141 6.2.3.1 Core Neutronic Studies
142 6.2.3.1.1 Nuclear Design of Mission MOX Fuel Assemblies
143 6.2.3.1.2 Investigation of Various Burnable Poisons for MOX Fuel
144 6.2.3.1.3 Analysis of Various Absorbents effectiveness in Control Rods
145 6.2.3.1.4 Development and Studies for Equilibrium Fuel Cycles with 1/3 MOX Fuel
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146 6.2.3.1.5 Study of Neutronic characteristics of non-equilibrium fuel cycles

147 6.2.3.1.6 Generation of Kinetic Input to Transient Analyses

148 6.2.3.1.7 Generation of Input Data to Fuel Fabrication and Economic Estimations

149 6.2.3.1.8 Analysis of improvement of Control Rod System

150 6.2.3.1.9 Influence of Variation of W-Plutonium Isotopic Composition on Neutronic Core Characteristics

151 6.2.3.1.10 Estimation of engineering Margin Coefficients for MOX FAs

152 6.2.3.1.11 Calculation of Neutron Fluence at Reactor Vessel and Construction Materials for MOX Fuelled core
153 6.2.3.1.12 Analysis of Stability of MOX Fuelled Core, Managing of Power Distribution

154 6.2.3.1.13 Analysis of Core Dynamical Reaction on Different Operational Disturbance ( UOX and MOX Cores)
155 6.2.3.1.14 Decay Heat Calculation for Various Time Periods ( Seconds, Hours, Years, Centuries)

156 6.2.3.1.15 In-core Detecting System Analyses

157 6.2.3.1.16 Criticality Analysis for In-Core Fuel Reloading Operations

158 6.2.3.2 Reactor Safety Analyses

159 6.2.3.2.1 Generation of Kinetics Parameters/Update RELAP5

160 6.2.3.2.1.1 Preliminary MOX mission Assembly Design Kinetics Parameters/Update RELAP5

161 6.2.3.2.1.2 Final MOX mission Assembly Design Kinetics Parameters/Update RELAP5S

162 6.2.3.2.2 Steady State Thermal Hydraulic Analysis

163 6.2.32.2.1 Preliminary Report on Analysis

164 6.2.3222 Final Report on Analysis

165 623223 Develop component of the report thermal hydraulic licensing documentation for insertion MOX assemblies
166 6.2.3.2.3 Report Defining Transients to be Studied

167 6.2.3.2.3.1 Initial Transient Definitions for1/3 MOX Fuel [Rus-Gidropress]

168 6.2.3.2.3.2 Refined List of Transients for 1/3 MOX Fuel [Rus-Gidropress]

169 6.2.3.2.4 Create Balakovo Specific RELAP5 Model

170 6.2.3.2.4.1 Preliminary Balakovo RELAP5 Model (mission fuel) [Rus - Kurchatov]

171 6.2.3.24.2 Detailed Balakovo RELAP5 Model (mission fuel) [Rus-Kurchatov]

172 6.2.3.2.5 Modify 1-D Design Code Balakovo Model

173 6.2.3.2.5.1 Preliminary Balakovo Model (mission fuel) [Rus-Gidropress]

174 6.2.3252 Detailed Balakovo Model (mission fuel) [Rus-Gidropress]

175 6.2.3.2.6 Perform Transient Analysis

176 6.2.3.2.6.1 RELAP5 Model Runs for Initial Transients (mission fuel) [Rus-Kurchatov, US]

177 6.2.3.26.2 RELAP5 Model Runs With for Refined Transients (mission fuel) [Rus-Kurchatov, US]

178 6.2.3.26.3 Licensing code runs for initial transients (mission fuel) [Rus-Gidropress]

179 6.2.3.26.4 Licensing code runs for refined transients (mission fuel) [Rus-Gidropress]

180 6.2.3.26.5 3-D Neutronic calculations for reactivity induced transients (mission fuel) [Rus-Kurchatov,Gidropress, US]
181 6.2.3.26.6 Perform licensing calculations for mission fuel and develop documentation (Rus-Kurchatov,Gidropress, US)
182 6.2.3.3 Criticality and shielding analysis for transportation and storage of MOX Fuel at NPP
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183 6.2.34 Determine Reactor/NPP Modifications
184 6.2.4 Developing Alternative with Increasing of Plutonium Throughout
185 6.2.4.1 Analysis of Core Parameters Dependence from MOX Fuel Part
186 6.242 Developing Alternative Fuel management Scheme for VVER-1000
187 6.2.5 Analyses of MOX Fuel Properties
188 6.2.5.1 Collection of Bibliographic Information
189 6.2.5.2 Creation of Data Bank on MOX Fuel properties
190 6.2.6 Investigation of Operational and Safety Limits for VWVER-1000 with MOX Fuel
191 63 Determine Top Level MOX Fuel Requirements
192 64 Analyze and Identify VVER-1000 Reactors
193 6.5 VVER-1000 Reactors Selected
194 6.6 Preliminary Cost Estimates
195 6.7 Reactor Life Extension Studies
196 6.8 Irradiate LTAs in B-4
197 6.8.1 MOX LTAs Design/Neutronic Calculations/ Reactor Safety Analyses
198 6.8.1.1 MOX LTAs Design
199 6.8.1.2 Neutronic Calculations
200 6.8.1.3 Reactor Safety Analyses
201 6.8.2 Fuel Storage and Handling Systems at NPP
202 6.8.3 ( ) LTAs
203 6.8.3.1 In-Core System Modernization
204 6.8.3.2 Fresh and Spent Fuel Storage and Transportation at NPP
205 6.8.3.3 Facility for Fuel Inspection in Reactor
206 6.8.3.4 Equipment for Fuel Clad Hermetice Control
207 6.8.3.5 Equipment for Coolant Activity Control
208 6.8.4 Prepare and Submit License for VVER-1000 Reactor with LTAs
209 6.8.4.1 Correction of Reactor Safety Report
210 6.8.4.2 Correction of NPP Safety Report
21 6.84.3 Correction of Operational Reactor Regulation
212 6.844 Correction Operational Instructions
213 6.845 Prepare and Submit license for VWVER-1000 reactor with LTAs
214 6.8.5 GAN reviews license
215 6.8.6 License available
216 6.8.7 Perform ( if necessary) Modifications of NPP for LTAs Introduction
217 6.8.8 MOX LTAs Irradiation
218 6.8.8.1 Calculational Assistance of LTA Irradiation
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219 6.8.8.2 Mesurements of Neutron Characteristics of Reactor
220 6.8.8.3 Radiological Characteristics Mesurements of Fresh and Spent LTAs
221 6.8.8.4 Collection and Analysis Reactor Operational Data
222 6.8.9 Postirradiation analysis of LTA
223 6.8.9.1 Developing Postirradiation Studies Programm
224 6.9 Design of VVER-1000/NPP Modifications
225 6.9.1
226 6.9.2 Prepare Reactor/NPP Modification designs
227 6.9.21 Nuclear Design
228 6.9.2.2 Thermohydraulics and Safety Analysis
229 6.9.2.3 Control And Protection Rod System
230 6.9.24 Boron System
231 6.9.25 In-Core Detector System
232 6.9.2.6 Fuel Storage and Handling Systems at NPP
233 6.9.2.7 Facility for Fuel Inspection in Reactor
234 6.9.2.8 Equipment for Fuel Clad Hermetice Control
235 6.9.2.9 Equipment for Coolant Activity Control
236 6.9.3 Prepare and submit reactor license amendment request
237 6.9.3.1 Correction of Reactor Safety Report
238 6.9.3.2 Correction of NPP Safety Report
239 6.9.3.3 Correction of Reactor Operation Order
240 6.9.34 Correction Operational Instructions
241 6.9.3.5 Prepare and Submit license for VVER-1000 reactor with LTAs
242 6.9.4 GAN reviews reactor license
243 6.9.5 GAN Issue Reactor License
244 6.10 Definitive Cost Estimate
245 6.11 Perform Reactor/NPP Modifications
246 6.11.1 Perform Reactor/NPP Modifications
247 6.12 Reactors Operation (Phase 1 of Mission)
248 6.12.1 Reactor operation
249 6.13 Increasing of Plutonium Throughput (Phase 2 of Mission)
250 6.13.1 Analysis of Reactor Operation Experience
251 6.13.2 Analysis of additional VWVER-1000 Capacity
252 6.13.3 Additional VVER-1000 Reactor Capacity available
253 6.13.4 Prepare Additional Reactor/NPP Modification designs
254 6.13.5 Prepare and submit license for additional VVER-1000 reactors
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255 6.13.6 GAN reviews reactor license

256 6.13.7 Definitive Cost Estimate

257 6.13.8 GAN Issue Reactor License

258 6.13.9 Perform Additional Reactor/NPP Modifications

259 6.13.10 Reactor operation

“80 " BN-600 Reactors

201 ® Other Activities

262 8.1 Transportation of Fissile Materials

263 8.1.1 Cask for Fresh LTAs transportation available

264 8.1.2 Cask for Spent LTAs transportation available

265 8.1.3 Casks for Fresh Mission MOX Fuel Assemblies transportation available

266 8.1.4 Casks for Spent Mission MOX Fuel Assemblies transportation available

267 8.2 MOX Spent Fuel Storage

268 8.3 Radiological, Ecological and Social Aspects of the Use MOX Fuel

269 8.3.1 Radiological, Ecological and Social Problems for LTAs operation at Balakovo-4 have been decided
270 832 Radiological, Ecological and Social Problems for Mission MOX Fuel operation at VVER-1000 have been decid
271 8.4 Safeguards and Security Systems at the Use of MOX

272 8.4.1 Safeguards and Security Systems for LTAs operation at Balakovo-4 Available

273 8.4.2 Safeguards and Security Systems for Mission MOX Fuel operation at VWVER-1000 Available
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PROPOSED LEVEL 2 ROADMAP NOT LINKED TO LEVEL 1

E-1



E-2



ORNL 2000-1286C EFG
PreDecisional Draft

Russian Nuclear Materials Disposition Program Logic,
VVER-1000 Reactor and Nuclear Fuels Level 2

MOX Fuel Fabrication Facility for VVER-1000 Reactors

Licensing

[—— “Tochwear  Econane Pellet MOX Fuel Operate Pellet MOX Decommission

osicatonty Woring Dravings o Consucton of Fab Faciiy o panaes Oporao Pl
SuppringSie ey Sos sttt ’ Sarapand o Fat Faci
i otmantorioxfoo [~ SErSEON(TED) (e PolelNOX PPl (| Polet NOX Fus Fa Sromn Operations oty |
b Faciity(s) Facil i v

@2MT/Yr
e

Lessons Leamned
rom Bulding MOX

Wt for Decision i Test Line

MOX Fuel Fabrication for VVER-1000 Reactor LTAs

J

i
Techrical Cooperation| _|_ | Programma Goais,
Requirements and * * \
Detemine Develop Fuel |

Determine MOX Fuel
pimization Basis Reguirements Specifications

RE Physics and
Analytcal Work

Devsiop Feed
Vetorial
Spectoatons

Cost Analysis

Proimiary core
o
ot Covrsion pme J— o
oo o, Touon
Sovrspcoan [ son)
o jeatocieteiany
soosea | \ TostNoX et e Tranox RN owttowd T R e Postaaton Loense NOX Pt
G i Desn oo s of e (H o bt
- t
- Preliminary Fuel Assembly Design (LTA/Mission) Slle Evaluation
kv Coe o (TAMson
ey pra oy
S i s . o) [—
Wasto Trotmeny
i)
Storace & Rapostry
VVER-1000 Reactor LTAs VVER-1000 Reactor Opdratiuns ‘
et oot i
3, Vm i ox VVER-1000
Testing Bench Irradiate LTAs in Post Iradiation reLTA Ops \(e2 \pproval for MOX| Losdng o VVER-1000 Reactor Are Reactors. Increased Reactor|
ot Post st o VSRS | colfitsh Coo 10 o e
R s Misen e (G Operations
i )
e =
[—
[or—
odtatons
Transportation I Gore Contrl \Design Plant Obtain Expermartal

Safety Analysis

From GAN for B4
[Crom |

Identy Addiional
Rocs for MOX Fuel

n Core.
Modifcations

Environmental Radiation

« A Emissions Complance ]

Rolations Safety Analysis:

T
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
)
T

Y

Spent Fuel
Storage.

VVER-1000 Reactor Modifications Fuel Storage

Lo Extension Sudes
o s, g swress ).
i

Licensing Submital
NIPCAA (Because of Adtonsl Pants) Tor PP

Physical Pant
Analysis

‘Schedule

Cost Estmate for Reactor Roceives

Design of
Perform WER Licenss and s
Reactor Modifications. Update FSAR Roady for MOX Fuel

actor
Modifications Modifcatons
23

Train and Certy
erat

afety Analysis:

—

- 0 o SpentFresh Fust Bersonnel
- Camparisan Analysisof Crial Storage
Expormnt
+ Andlysi o LTA Resuts H
‘Gode asation and Verfcatn|

* Rarkaton Anayss Documents,

:

RE Physics and Gonduct Critical " Eum« Contingency Procacures

Analytical Work oquired? Experiments. . ‘Fluence on Vessel DU
e St
UTAResuts
No
L] B0 Cors
v
Catuton of i 73
oy e
Bl
Sovro pocant
~ e A LEU O
R St Ao
pr)
p—
A ansPuc
oions 1~ [ e EmisonsComplrce
i i

PreDecisional Draft

Fig. E.1 Russian Nuclear Materials Disposition Program logic, VVER-1000 reactor and nuclear fuels level 2.
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Fig. E.1(a) MOX fuel fabrication facility for VVER-1000 reactors.
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MOX Fuel Fabrication for VVER-1000 Reactor LTAs
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