RSICC CODE PACKAGE CCC-467

 

1.         NAME AND TITLE

ITS 3.0:            Integrated TIGER Series of Coupled Electron/Photon Monte Carlo Transport Codes System.

 

    AUXILIARY ROUTINE

UPEML 3.0:  Machine Portable CDC Update Emulator

 

2.                   CONTRIBUTORS

Sandia National Laboratories, Albuquerque, New Mexico.

National Institute of Standards and Technology, Gaithersburg, Maryland.

Experimental and Mathematical Physics Consultants, Gaithersburg, Maryland, contributed the Windows implementation.

Titan Corporation, Albuquerque, New Mexico.

Ecopule, Inc., Springfield, Virginia, contributed the Linux implementation.

 

3.         CODING LANGUAGE AND COMPUTER

Fortran 77; Cray, IBM, Vax, Sun, IBM PC, Linux (C00467MNYCP02).

 

4.         NATURE OF PROBLEM SOLVED

ITS permits a state-of-the-art Monte Carlo solution of linear time-integrated coupled electron/photon radiation transport problems with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence.

In November 2004, the LINUX release was added to the existing ITS package.  No changes were made to the UNIX or PC versions of the code.

In April 1992, the Unix release was replaced with a newly frozen version designated ITS 3.0.   In November 1999, the Unix and PC files were merged into one package; no modifications were made. In October 2002, the PC version was updated with executables created with Lahey F90 and F95 because Lahey F77L3 executables in the previous release would not run under WindowsXP.  The Unix codes were not modified.

In November 1997, an entry was posted in the ITS chapter of RSICC=s electronic notebook on the WWW announcing an enhancement available for use with ITS 3.0.  The enhancement, known as BENGAL, was developed at the University of Tennessee Space Institute (UTSI) under contract for Arnold Engineering Development Center's (AEDC) DECADE project.  BENGAL is a set of UPdate Directive (UPD) files which enhances the ITS member codes by increasing their execution speed.  With the exception of the replacement of the random number generator, these enhancements give identical results to those obtained by the original ITS code. In the case of the replacement of the random number generator, the enhancement gives results with similar statistical accuracy to the original ITS code. RSICC's code packages were not updated, but the BENGAL enhancements are available upon request by sending e-mail to rsic@ornl.gov.

 

5.         METHOD OF SOLUTION


Through the use of a machine portable utility that emulates the basic features of the CDC UPDATE processor, the user selects one of eight codes for running on a machine of one of four (at least) major vendors.  With the ITS 3.0 release the PSR-245/UPEML package is included to perform these functions.  The ease with which this utility is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems.  Physical rigor is maximized by employing the best available cross sections and sampling distributions, and the most complete physical model for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV.  Flexibility of construction permits the codes to be tailored to specific applications and the capabilities of the codes to be extended to more complex applications through update procedures.

 

6.         RESTRICTIONS OR LIMITATIONS

Restrictions and/or limitations for ITS depend upon the local operating system.

 

7.         TYPICAL RUNNING TIME  

                        Test cases using the distributed Lahey Fortran 95 executables ran in 5 minutes on a Pentium IV 1.4 GHz under Windows 2000 Service Pack 1.

 

8.         COMPUTER HARDWARE REQUIREMENTS

ITS3 is operable on the Cray, IBM-3081, VAX, IBM RISC and SUN workstations and requires about 9 megabytes of hard disk.  It also runs on personal computers under either Windows or Linux operating systems.  For the PC version, about 120 MB of hard disk space is required to compile and run test cases.

 

9.         COMPUTER SOFTWARE REQUIREMENTS

A Fortran 77 compiler is required on Unix systems.  ITS3 runs on Cray computers under UNICOS operating system, on IBM under MVS, and on Vax under VMS, on IBM RISC 6000 under AIX, and on Sun under SunOS.  Included Windows PC executables were created using Lahey Fortran Fortran 90 and Fortran 95 compilers.  Executables produced by these compilers are compatible with Windows and will run in background with an appropriate setup.  They have been tested under Windows XP Service Pack 2 and Windows 2000 Service Pack 4. Linux executables are also included in the package. RSICC tested the LINUX version on an AMD Athlon under RedHat Linux 7.3 with GNU Fortran 0.5.26 & gcc 2.96.

 

10.       REFERENCES

J. A. Halbleib, "MTAX Notification Letter," (October 28, 1993).

J. A. Halbleib, "Correction Letter," (August 12, 1994).

J. A. Halbleib and R. P. Kensek, T. A. Mehlhorn, G. D. Valdez, S. M. Seltzer, M. J. Berger, "ITS Version 3.0: The Integrated TIGER Series of Coupled Electron/Photon Monte Carlo Transport Codes," SAND91-1634 (March 1992).

B. L. Kirk, "IBM User's Guide to CCC-467/ITS Version 2.1," Informal Report (February 1988).

T. Jordan, "ITS, PC Version," README.EMP (September 1992).

B. L. Kirk, "README for RISC Workstations" (April 1992).

T. A. Mehlhorn and T. A. Haill, UPEML Version 3.0: A Machine-Portable CDC Update Emulator," SAND92-0073, UC-705 (April 1992).

Tom Jordan, "ITS_2002.PDF," Information file on PC release (August 2002).

 

 

 

11.       CONTENTS OF CODE PACKAGE

Included are the referenced documents and a CD with tar files for the Unix and Linux versions along with a self-extracting compressed Windows file, which contain the source codes, sample problem input and output. PC executables are included in the Windows and Linux files.

 

12.       DATE OF ABSTRACT

January 1985; revised August 1987, October 1987, February 1988, September 1990, February 1991, April 1992, June 1992, July 1992, March 1993, January 1994, February 1994, March 1994, November 1994, November 1997, November 1999, October 2002, November 2004.

 

KEYWORDS:   ELECTRON; GAMMA-RAY; MONTE CARLO; ONE-DIMEN­SION; SLAB; COUPLED; ELECTRON; CYLINDRICAL GEOME­TRY; COMPLEX GEOMETRY; COMBINATORIAL GEOME­TRY; MICROCOMPUTER; WORKSTATION