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Table 4. A Short Table of Integrals. (Continued) 

110. /l nzdz=zlnz-z 

i z” 111 z dz = x.“+l 
In z 111. k- n+1 

112. / & dz = In (In 2) 

113. 
/ 

e*z sin nz dz = 
pz(a sin nz - n CO8 XC) 

a2 + n2 

114. 
J 

e(l= eos 11~ dz = .~a=@ ~09 nz + n sin 4 

a’ + n2 

Dejinite Inteyrals: 

115. 
K 

z’-‘e-z dz = j:, (h g-‘dz = l-(s) 

116. /;g=--- m>l 

117. 
/t 

a dz ~ = : if a > 0; 0, if a = 0; - Es if 0 < 0 
(12 + 22 

118. /t F = i, if m > 0; 0, if m = 0; - a* if ??3 < 0 

119. j; coy dz - m 

120, j; ta”zd2 = ; 

121. j; sin:: dz - ; 

122. e-nl”l dz = +a d; = $ l-(i) a>0 

123. j; zW=2dz = $ 

1.4 Numerical Differentiation and Integration 

Given a set of numerical values of a function, the processes of numerical differenti- 
ation and integration consist, respectively, of calculating the derivative (or deriva- 
tives) by means of these values and of computing the values of a definite integral from 
the set of values of the integrand. In both numerical differentiation and integration 
the problem is solved by representing the function by an interpolation formula and 
then differentiating or integrating as desired. Interpolation formulas are discussed 
in Art. 3.5 of Sec. 3-l. 

It was noted in Art. 3.5 of Sec. 3-l that a polynomial which agrees with f(z) at 
x0, Xl, x-1, X2, x-2, . . is the central-difference formula 

Ph) = f(x0) + up a.&) + ;; Wza) + 
u(u’ - 12) 

3! 
P Woo) 

+ 
u2(u2 - 12) 

6~f!zo) + 
d(uZ - 12)(U2 - 32) 

4! 5! 
P 8mh) + . 

= fbh) + u 
AY-1 2’ AYO + ; A.2y-l + u(u” - 12) A3y-z + A%1 + . . . 

3! 2 

where z = z0 + uh. Since u = 0 at ZO, the derivative at z0 is given by 

Higher derivatives can be obtained in like fashion by further differentiating P(Z). 
Near the beginning of a set of tabular values Newton’s forward-difference formula 
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is more convenient and near the end of the set Newton’s backward-difference formula 
is more convenient than the central-difference formula. 

There are a large number of quadrature formulas for the approximate integration 
of a function specified by a set of numerical values. As previously noted, any of the 
interpolation formulas can lead to quadrature formulas. The trapezoidal rule and 
Simpson’s rule are the most commonly used. If h is the length of each subinterval, 
the trapezoidal rule is 

/ 

xa+nh 

zo 
ydx = ; (Yo + 2Yl f 2Yz + . . . + %I-1 + Yn) 

and Simpson’s rule is 

Y dx = ; Q/o + 4111 + 2~2 + 4~2 + 2y, + . . + 2Y,-2 + 4Y,-1 + yn) 

where n in this last case must be an even number; i.c., the number of subintervals is 
even. 
, Gauss’s formula (see references) is the most accurate of the formulas ordinarily 

used and can be used advantageously with high-speed machines. 

2 FUNCTION THEORY 

2.1 Real Variables ’ 

The subject matter of real variables map include the following topics: the system 
of real numbers, sequences, infinite series, ordinal and cardinal numbers, set theory, 
functions and limits, continuity and discontinuity, differentiation and integration, and 
measure theory. Infinite series and differentiation and integration are of such scope 
that they are discussed in other articles. Ordinal and cardinal numbers and measure 
theory are not felt to be essential here. 

2.11 The System of Real Numbers and Sequences. The foundation of the 
theory of functions of a real variable depends upon the real-number system. Although 
the refined concept of the real number is the starting point for any discussion of the 
fundamental parts of higher analysis, only the more important concepts and results 
will be indicated. 

The concept of the natural numbers or positive integers-l, 2,3, . . . -may be taken 
as a starting point. The class of rational numbers is obtained from the positive integers 
by allowing the inverse operations of addition and multiplication, namely, subtraction 
and division. The totality of positive integers, negative integers, zero, and fractions 
constitute the class of rational numbers. 

It is generally appreciated that certain numbers such as d and ?r are not rational 
‘numbers and cannot therefore be represented by the ratio of two integers. Irrational 
numbers arc generally derived from the rational numbers by either Cantor’s theory or 
Dedekind’s theory. 

Cantor’s theory of irrational numbers depends upon the concept of a sequence of 
rational numbers. If by some suitable process a first, a second, a third, . . rational 
number can be formed successively, and if to every positive integer n one and only one 
rational number a,, corresponds, then the numbers 

. 
al, a2, . . . , a,, . . 

in this order, corresponding to the natural order of the positive integer, are said to form 
a sepuente of rational numbers. The individual numbers that form the sequence are 
called the elements of the sequence. The sequence 

al, a2, . . . , a,, . . . 

will be denoted symbolically by (a,, 1. 
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A sequence of rational numbers (a,) is called convergent or regular if for an arbi- 
trary e > 0 there exists a number N such that for every n > N 

la, - an+ml < E where m = 1, 2, 3, . 

The essential feature of Cantor’s theory of irrational numbers is the assumption that 
corresponding to every convergent sequence of rational numbers there exists a uniquely 
determined object called a real number. Any real number can, therefore, be regarded 
as being represented by a convergent sequence of rational numbers. Two real num- 
bers A and B defined by the convergent sequences of rational numbers (a, 1 and (h, ) 
are said to be the same number or are equal if there exists an integer N such that for 
all values of n > N 

lG+* - h,+,,l < e m = 1, 2, 3, . . . 

where l is an arbitrarily small positive number. 
The real-number system consists of rational numbers, since any rational number a 

can be represented by a convergent sequence (a, 1, where a, = a for all n, and the real 
numbers that are not rational, i.e., the irrational numbers. 

In the Dedekind theory of the real-number system the real numbers correspond to 
partitions of the rational numbers. A partition is formulated in the following manner. 
Divide all the rational numbers into two classes R and S. In class R every number 
is less than any number in S, and in class S every number is greater than any number 
in R. For an irrational number there is no largest number in R and no smallest 
number in S. For a rational number there is either a largest number in R or a smallest 
number in S. It is possible to show that Cantor’s method of convergent sequences and 
Dedekind’s method of partitions are equivalent in that starting with the rational 
numbers the same system of real numbers can be developed. 

If there exist a sequence (a, ) and a real number A such that the sequence (a, - A 1 
forms a null sequence, then the sequence [a,) is said to converge to the limit A and is 
denoted by 

lim a, = A 
Tb-+‘D 

This definition says that for every e > 0 there exists an N such that for all n > N, 
jan - Al < B. Every sequence that does not converge in the above sense is called 
divergent. The Cauchy OT general principle of convergence states that the necessary and 
sufficient condition for the convergence of the sequence (a,) is that for every E > 0, 
there exists an N such that for n > N, Ion+,,, - anI < e, where m = 1, 2, 3, . . 

The system of real numbers can be considered sufficient for the needs of the theory 
of functions of real variables, since the real numbers form a closed system with respect 
to arithmetic operations, such as addition, subtraction, multiplication, division, 
extraction of roots of positive numbers, and powers, and the limiting process. A 
number system is called closed with respect to an operation or process if this process 
results in a number contained in the system. 

It is possible to set up a one-to-one correspondence between the points of a straight 
line and the real-number system. Because of this possibility, the properties and 
definitions of the real-number system have a geometrical interpretation. 

2.13 Set Theory. The starting point for most mathematical developments is 
certain objects such as numbers or letters. A set (or class or aggregate or collection) 
is defined by any property that any particular one of these objects does or does not 
have. The objects that have the property are called elements of the set. This is 
symbolized by 

Sd3 

where s is an element and S is the set. An empty set does not contain any elements; 
i.e., there are no objects having the property of the set. 

Two sets S, and Sz are called equal, and in symbols Sr = S’s if every element of Si 
is an element of Sf and conversely if every element of St is an element of S,. If all 
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the elements of a set Si are simultaneously elements of a set SZ, then S1 is called a 
a&& of S2, and this relationship is denoted by Sr C SZ. 
indicates the same relationship, and SZ is said to include S1. 

The notation S2 > S, 
If Si C Sz and SI C S,, 

then S, = SZ. If 5’1 C SZ and SZ C Sa, then St C Sa. If Si C Sx but Si is not 
equal to &, symbolized Sr # St, then Si is called a proper subset of &. 

The intersection (or logical product or meet) of two sets S1 and S2 is denoted by 
S, n S, and is the set consisting of all elements common to the sets S1 and S2. The 
union (or logical sum) of two sets S, and Sz is denoted by 5’1 U Sz and is the set con- 
sisting of all elements that belong to at least one of the sets Si and Sz. The definitions 
of intersection and union hold for an arbitrary number of sets. If the intersection of 
two sets S, and SZ is the empty set, then the two sets are called disjoint or mutually 
exclusive. If S1 is a subset of a set S, then the complementary set of S, with respect to 
S is the set of elements of S obtained by omitting the elements of S that are elements of 
Sr. Generally the term complement of a set is used with respect to a fundamental, 
and therefore understood, set, such as the set of real numbers. 

Sets may first of all be classified into finite and infinite according to whether they 
contain a finite or infinite number of elements. An infinite set is called enumeTahle 
(or denumerable or countable) if, and only if, a one-to-one correspondence can be set 
up between the elements of the set and the positive integers. Here the term countable 
will be used to indicate either a finite or an enumerable set. A noncountable or 
nonenumerable set is a set that is neither finite nor enumerable. The following results 
dealing with countable and nonenumerable sets are well known: 

1. Any subset of a countable set is also countable. 
2. The sum of a countable set of countable sets is also countable. 
3. The set of rational numbers is enumerable. 
4. The set of irrational numbers and the set of real numbers are nonenumerable. 
5. The set of all algebraic numbers is enumerable. An algebraic number is the root 

of the polynomial equation 
a 

where a,, # 0 ahd all the ai’s are integers. 
6. The set of transcendental numbers is nonenumerable. The real numbers that 

are not algebraic are called Transcendental. 
In the discussion of the real-number system the set of points on a line was noted to 

correspond to the set of real numbers. This set of points is called a linear point set or, 
briefly, a linear set. A linear set is hounded if all its points lie in a finite interval. 
An open interval, symbolized by (a,h), consists of all points x such that a < x < h. A 
closed interval, symbolized by [a,b], consists of all points x such that a < x < h. 

A point a is called a limit point (or limiting point or accumulation point) of a set S 
if there exists a point of the set S, different from a, in every neighborhood of the point 
a. For a linear set a neighborhood of a point a means the open interval (a - c, a f e), 
where E > 0. It can be shown from the definition that every neighborhood of a limit 
point contains infinitely many elements of the set. If every point of an interval is a 
limit point of a set S, then the set S is said to be everywhere dense. The set of all limit 
points of a set S is called the de&Ed set (or derivative) of the set S and is denoted by 
S’. The c1osu.e of S, denoted by S, consists of all the points of S and the limit points 
of S, that is, S = S V S’. Any point of a set which is not a limit point is called an 
isolated point. 

A point a is called an interior point (or inner point) of a set S if there exists a neigh- 
borhood of a containing only points of S. A point a is called an ezterior point of a set 
S if there exists a neighborhood of a containing no points of S. If a point is neither 
an interior nor an exterior point of a set S, then it is called a boundary point of the set. 
lf a set contains all its boundary points and therefore its limit points, it is called closed. 
If every point of a set is an interior point, the set is called an open set. 
is a closed set where every point of the set is a limit point of the set. 

A perfect set 
Finally, a 
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conlinuum is a set that is perfect and everywhere dense. It may be noted that the 
complement of an open set is a closed set and conversely. 

For a linear set S a point a is called an upper bound if s 5 a for every point s of the 
set S. The point a is a lower bound if s 2 a for every point s of the set. The point a 
is called the least upper bound for the set S if it is an upper bound and if for any e > 0 
there exists a point of S greater than a - e. The greatest lower bound a for a set is 
similarly a lower bound such that there is a point of the set less than a + E, where 
6 > 0. 

Two of the important theorems of set theory follow. 
Heine-Bore1 Theorem. Let the closed set of uoints S be covered bv a set of intervals: 

then there exists a finite number of intervals that likewise cover S.” A set S is said to 
be covered by a set of intervals Z if every point of the set S is interior to at least one 
of the intervals of the set I. 

Weierstrass-Bolzano Theorem. If S is an infinite bounded set there exists at least 
one limit point. 

2.13 Functions and Their Limits. If in the course of a discussion a symbol may 
be assigned various numerical values, the symbol is called a variable. A constant 
assumes but one numerical value during a discussion. A real variable has values in the 
set of real numbers. Given two variables z and y, y is called a function of z if to 
every value of z in the domain of z there is determined a definite value or values of y. 
This functional relationship is denoted symbolically by y = f(z). x is called the 
independent variable and y is called the dependent variable. The vital aspect of the 
definition of a function is that for every value the independent variable takes on, the 
corresponding value or values of the dependent variable are uniquely determined. 
The set of values that the independent variable assumes is prescribed and is called 
the domain. The set of values taken on by the dependent variable is called the range. 
A function is called single-valued if the dependent variable takes on but one value for 
each value of the independent variable. If for any value of the independent variable 
the dependent variable takes on more than one value, the function is called multivalu~d 
(or multiple-valued). 

A polynomial function has the form 

a@ + a@-i + . . . + a,-lx + a, = 
c 

six”-’ 

i=o 

where the ai are constants and n is a positive integer. A rational function is the ratio 
of two polynomial functions. An algebraic function is defined by means of the 
equation 

n 

c 
fi(x)a,-I = 0 

i=o 

where the fi(x) are rational functions of z. Tran.scendatal Junctions are functions that 
are not algebraic. 

The theory of functions of a real variable deals with correspondences between two 
sets of real numbers. designated the indenendent and denendent variables. The 
terminology of set theory thirefore applies to the set y. The function f (z) is said to be 
bounded, have a least upper bound, etc., if the set y does. If the least upper bound 
of a function is a point taken on by the function, then it is called the maximum (or 
maximum value) of the function. The minimum is associated similarly with the 
greatest lower bound. 

The quantity f(z) is said to have a limit b as z tends to x0 if for any e > 0 there 
exists a 6 > 0 such that If(x) - bl < e for all x for which 0 < Iz - x01 6 8. Sym- 
bolically this relation is written 

lim f(x) = b 
MZD 
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From the definition of the limit of a function, it follows that if the limit exists, the 
value approached by f(x) as x approaches x0 does not depend upon the value of f(x) 
at x0 and also is independent of the particular set of values that x takes on in approach- 
ing x0. If the independent variable x is allowed to take on only values larger than 
x0 or less than 20, then the respective limits are called tight-hand and left-hand limits. 
These are symbolized, respectively, by 

lim f(x) = f(xo+) or lim f(x) 
Z-+20+ Z>ZO 

and lim f(x) = f(x0-) or lim f(x) 
z-+ 20 Z<ZO 

The Cauchy or general principle of convergence states that a necessary and SUE- 
cient condition for the existence of a limit to f(x) as z tends to z,, is that for E > 0 
there exists a 6 > 0 such that If(x”) - f(x’)j < e for all values of I’, x” for which 
0 < jx” - al < Ix) - al 2 8. 

A function may depend upon the values taken on by two or more independent 
variables. Again the vital aspect of the functional relationship is that whenever each 
of the independent variables assumes a value, a corresponding value or set of values 
of the dependent variable is uniquely determined. Given a function of two or more 
variables, there exist two types of limits: iterated limits and simultaneous limits. 
Let f(x,y) be the function of two independent variables z and y, and let (xo,yO) be the 
limit point; then 

)m, [ ;$, f&Z0 ] and J;l, [ Ji:, f&y) ] 

are called iterated (or repeated) limits. An iterated limit indicates that first an 
ordinary limit is taken for one variable holding the other variable (or variables) fixed 
and then a limit is taken for the other variable (or other variable with the remaining 
fixed). The simultaneous limit 

lim f(x,y) 
-2% 
v-+vo 

has the value A if for 6 > 0 there exists a positive number 6 such that If(x,y) - A\ < l 

for all x and ‘y such that 0 < 15 - x01 < 8 and 0 < Iy - yol < 6. If the simultaneous 
limit exists, then the two iterated limits exist and are equal. The converse does not 
hold, iince the simultaneous limit can be nonexistent and yet the two iterated limits 
may exist and even be equal. 

2.14 Continuous and Discontinuous Functions. A function f(x) is said to be 
continuous at a point z0 if 

lim f(x) = f(x0) 
z-+20 

that is, for l > 0, there exists a 6 > 0 such that If(z) - f(xo)/ < E for all x such that 
1% - ~01 < 6. In words this definition states that the limit shall exist at 20, that the 
function is defined at XO, and that these two values are equal. f(x) is continuous in the 
interval [a,b] if it is continuous at every point x, where a < x < b, and if at the end 
points 

lim f(x) = f(u) and ;;T-f(x) = f(b) 
X-N+ 

The quantity f(x) is said to have an ordinary discontinuity (or jump discontinuity 
or simple discontinuity or discontinuity of the first kind) at the point xo if the right- 
hand and left-hand limits at a point exist but are not equal; i.e., 

lim f(x) # lim f(x) 
Z+ZO+ z+zo- 

If the right-hand and left-hand limits exist and are equal but the function has a 
different value, i.e., 

, lim f(x) = lim f(x) # f (x0) 
Z-+20+ CIZO- 
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then the function’has a removable discontinuity at the point 20. When the right-hand 
limit or the left-hand limit or both these limits fail to exist at point x0, then the function 
has a discontinuity of the second kind at the point XO. 

A function is continuous on the right at a point if the right-hand limit has the same 
value as the function at the point. Continuity on the left at a point and continuity 
on the right and left in an interval are defined in a corresponding fashion. f(x) is 
called uniformly conlinuous in the interval [a,b] if for E > 0 there exists a 8 > 0 
independent of the x,, in the interval [a,b] such that If(x) - f(x,Jl < 6 for all z satis- 
fying Ix - 201 < 6. 

Let f(x) be continuous in the interval [a,b], then the following results hold: 
1. f(x) is uniformly continuous in the interval. 
2. f(u) and f(b) have opposite signs; then there exists at least one value of x in the 

interval for which f(x) vanishes. 
3. f(u) # f(b); then as x takes on all values between a and b, f(x) takes on at least 

once all values between f(u) and f(b). 
4. If f (x) is single-valued in [a,b], then there exists at least one point of [a,b] at which 

f (2) takes on a maximum value. Likewise there exists a value of x where the minimum 
is attained. 

5. The function is bounded in that interval. 
6. The function is uniquely determined at every point of the interval by prescribing 

the function at a set of points everywhere dense in the interval [a,b]. 

2.2 Complex Variables 

2.21 Complex Plane and Sphere. Complex numbers have been discussed in 
Art. 2 of Sec. 3-I. The set of complex numbers can be put into one-to-one corre- 
spondence with the points of a plane. This correspondence associates the complex 
number .z = x + iy with the point in the plane whose rectangular or Cartesian 
coordinates are (x,y). Because of this association this plane is called the complex or 
z plane. This geometric association for complex numbers not only gives a geometrical 
interpretation for operations involving complex numbers but also allows the use of 
geometric terminology such as points and distances when discussing complex numbers. 
When the improper point z = m is added, the complex plane is closed. 

The number or point z can also be thought of as a vector that originates at the origin 
of the coordinate system and ends at the coordinates (x,y). 

The points of the closed complex plane can be mapped by stereographic projection 
one-to-one onto the points of a sphere called the Riemann sphere (or sphere of com- 
plex numbers). In this mapping, the south pole is placed at the origin and correspond- 
ing points for the sphere and plane lie on a ray that originates at the north pole. 

The following relations involve the absolute value 1.~1 = 1/zz+yz and the con- 
jugate Z = x - iy: 

1. 21 + 22 = z1 + zz. 
2. z1zz = Z&; (ZJZZ) = Z&. 
3. IZI = I.+ zz = 1212. 
4. Izr - zz( is the distance between the points z1 and ~2. 
5. lzzl > Izr/ says that the point .zt is farther from the origin than zi. 
6. 1~1 + ~21 5 1~11 + 1~21 corresponds to the geometric statement that no side of a 

triangle is greater than the sum of the other two sides. 
7. Izi - z?] 2 [[z,/ - Izz][ states that no side of a triangle is less than the difference 

of the other two sides. 
2.22 Functions of a Complex Variable. The concepts and definitions for real 

variables generally have significance for complex variables. z is called a complex 
variable if in the course of a discussion it assumes various complex values. Given two 
complex variables z and zu, w is called a complex fun&m of the complex variable z if to 
every value of z in the domain of z there is determined a value or values of w. Again 
w is called single-valued if it takes on only one value for each value of z and M is multiple- 
valued if it takes on two or more values for any value of Z. Polynomial, rational, 
algebraic, and transcendental functions are defined for complex variables in t.he same 
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fashion as for real variables. The distinguishing feature is the use of complex con- 
stants and the complex variable z in place of the real variable x. 

A neighborhood of a point z1 is the circular region 

12 - 211 < e 

where B > 0. The definitions of limit point, interior point, open set, and closed set 
as given in the article on set theory are applicable to a set of complex numbers. An 
open region, or just region, denotes an open set that is connected; that is, any two points 
of the set may be joined by a continuous curve all of whose points belong to the set. 
A closed region is a region plus all its limit points. A region is called simply connected 
if every closed curve within the region encloses only points of the region. A region 
that is not simply connected is called multiply connected. 

If an integral is taken along a closed curve that is the boundary of a region the 
integral is commonly called a contour integral. A closed curve is called posiiively 
oriented if the interior of the curve lies to the left of the curve as the curve is traversed 
i.e., the direction is counterclockwise. If only the initial and terminal points of $ 
curve coincide, then the closed curve is called simple. 

The quantity f(z) is said to have the limit zu,, as z approaches .zo if for any E > 0 
there exists a S > 0 such that If(z) - wOJ < E for all z for which 0 < Iz - z,,) _< 6. 
Let w = f(z) = u + iy = u(x,y) + iv(x,y), where z = x + iy and u and v are real 
functions of z and y; then the limit can be expressed by 

lim f(z) = lim u(x,y) + i lim v(x,y) = u0 + iv0 = w0 
Z-+PO z-+zo z-+zo 

ll+vo v-+2/0 

The results for limits with a complex variable follow almost directly, therefore, from 
corresponding results for real functions of two real variables. 

A single-valued function f(z) of a complex variable is called continuous at a point 
24 if 

lim f(z) = f(z0) 
*v+zo 

The three requirements of the definition are, again, that first the function be defined 
at zO, second the limit must exist as zo is approached, and finally the limit valtie must 
equal the value of the function at 20. The results of real variables concerned with 
continuity lead to analogous results for complex variables. For example, if a function 
f(z) is continuous in a bounded closed region, then it is uniformly continuous in that 
region; it ig bounded in that region, that is, If(z)1 < M where M is a finite positive 
number; If(z)1 has a finite upper limit in the region; and if z0 is an inner point of the 

’ region such that f(m) # 0, then there exists a neighborhood of z. for which f(z) # 0. 
The derivative of f(z) at the point ZI) is defined by 

lim f (‘) - f (“) 
z--t z-0 z - zo 

where f’(zp) denotes the complex number that the limit, if it exists, assumes. The 
differentiation rules for real variables can be extended essentially without change to 
complex variables. A function that has a derivative at every point of a region is 
called differentiable in the region. 

Let w = f(z) be a continuous single-valued function of z in a region R, let a and fl be 
two points of R, and let C be a curve of finite length connecting the two points and 
lying in R. Furthermore, let .ZO = a, zl, . . . , z,, = p be a sequence of points on C, 
and let TJ~ be any point on the curve between ziml and zi. The integral off(z) along C 

between the limits a and 0, which is symbolized by f(z) dz, is defined by 

n 

f(z) dz E /c f(z) dz = lim 
c 

f(n) (Zi - zi-1) 
n-am 

, i=l 
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where the limit indicates that n tends to infinity and that the absolute value of every 
subdivision jzi - z~l tends to zero. 

Sincef(2) = u(z,y) + iv&y) and dz = do + i dy, the complex integral can formally 
be written as follows in terms of real integrals: 

I c f(z) dz = I c b-&Y) dx - @,Y) dY1 + i lc W,Y) dx + u(w) dY1 

The curve C may be represented by the real parametric equations 

z = gw and Y = w 

where 0 5 t 5 1, a = g(0) + ih(O), and B = g(l) + ih(1). Let the functions g(l) 
and h(t) be single-valued and have continuous first-order derivatives; then 

J cf(4 dz = / o1 [us’@) - vh’@)] at + i 
/ 

o1 k7’(t) + uh’(t)l dt 

The following elementary properties for complex integrals may be noted: 

f(z) dz; that is, the sum of two integrals 

the integral taken over the entire curve. 

2. 
I 

apcfo dz = - jB% f(z) dz; that is, if the direction of integration is reversed, 

the value of the integral remains the same except for sign. 

3. 

4. )/cfWI <ML, h w ere If(z)1 < M for any z on C and L is the length of the 

curve C. 
2.23 Analytic Functions. A single-valued function f(z) which is differentiable, 

that is, has a first derivative at every point, in a region is called analytic (or regular or 
holomorphic) in the region. A function f(z) is called analytic at a point zg if its 
derivative exists at every point of some neighborhood of ZO. 

The concept of analytic functions, or analyticity, is particularly unifying and 
important for mathematical physics. Two necessary and sufficient conditions for the 
function f(z) = u(z,y) + iv(z,y) to be analytic in the region D follow: 

1. Cauchy-Riemann Equations. The four first-order partial derivatiyes of u and v 
with respect to 2 and y exist and are continuous in the region D, and they satisfy the 
Cauchy-Riemann differential equations 

au av au av -=-.-... -= -- 
ax ay ay a2 

2. Cauchy-Goursat Theorem and Morera’s Theorem. The integral I _ f(z) dz of the 

continuous function f(z), when taken along the entire boundary curve C of any sub- 
region of the region D, is zero. 

a. CAUCHY-GOURSAT THEOREM (NECESSITY). Let f(z) be single-valued and ana- 
lytic within and on a closed curve C; then 

/ 
cf(z) dz = 0 

b. MORERA’S THEOREM (SUFFICIENCY). Let f(z) be continuous in a simply con- 
nected region; then if 

I c f(z) dz = 0 

for every closed curve lying within the region, f(z) is analytic in that region. 
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Although it is possible to formulate other necessary and sufficient conditions for 
analyticity, it is customary to consider the consequences of analyticity whether they, 
in turn, imply analyticity or not. 
follow. 

Some important consequences of analyticity 

1. Cauchy’s Integral Formula. If f( ) . z is analytic in a region D, then Cauchy’s 
integral formula 

f (d = &. /c go & 

is valid for every simple, closed, positively oriented curve C and for every point a0 
interior to the curve C. 

2. Higher Derivatives. If a single-valued function f(z) is analytic in a region, then 
not only does the function by definition have a first derivative in the region but it also 
has all higher derivatives. The formulas 

f(*)(zo) = $ Ic (z ~‘~f,n+l dz n = 1, 2, . . 

are valid with the same conditions used for Cauchy’s integral formula. 
3. Laplace’s Equation. If f(z) = u + . zv is analytic in a region, then the functions 

u(z,y) and v(z,y) satisfy in that region the partial differential equation 

This equation is called Laplace’s differential equalion and is of great importance in 
mathematical physics. A function that has continuous second partial derivatives 
and satisfies Laplace’s equation is called a harmonic function. If f(z) = u + iv is 
analytic, then u and v are called conjugate harmonic functions. 

4. Taylor’s Series. If f (z) is analytic in a region D with a boundary C, then at each 
interior point zO,‘f (.a) can be represented uniquely by a power series of the form 

. 

where 

This series, called a Taylor’s series, converges and represents f(z) in the largest circle 
with center zo that encloses only points of D. If z. = 0, a Taylor’s series is called a 
Maclaurin’s s&es. 

5. Laurent’s Series. Let f(z) be analytic in the annular region D bounded by two 
concentric circles with center ZO; then f(z) can be represented by the Laurent’s series 

m 

2 
a,(2 - 20)” 

n=--ce 

where an = $ I 
c (r - zo)P--l f (I) dc 

and C is a simple closed curve lying in D and enclosing the inner circle. 
6. Identity Theorem. If two functions are analytic in a region, and if they coincide, 

in any neighborhood of any point zo of the region or any curve terminating at z. or 
even for an infinite number of distinct points with the limit point .zo, then the two 
functions are equal throughout the region. 

7. Principle of the Maximum Modulus. The maximum modulus of a function 
analytic in a closed region always lies on the boundary of the region. 
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8. Liouville’s Theorem. If a function f(z) is analytic and its modulus 1 f(z)] is 
bounded for all values of z in the complex plane, then f(z) is a constant. 

2.24 Singularities and the Classification of Functions. If a function can be 
made analytic at a point .zo by merely assigning the function a new value at the point 
ZO, then the function is said to have a removable singularity at ~0. An isolated singular 
point of a function is a singular point that can be enclosed by a circle containing no 
other singular point of the function. An isolated singular point za of a function f(z) 
is called a pole of order n if a positive integer n exists such that 

(2 - zo)*f(z) 

is analytic at z = z. and is different from zero when z = ZO. In case n = 1, the pole is 
called a simple pole. An isolated singular point zo of a function f(z) is called an 
essential singularity of f(z) if 

lim (2 - 20)*f(z) 
z-3 zo 

tends to infinity for all finite values of n. z = zo is called a branch point of the function 
f(z) if f (z.0 + pe+) is not periodic in ‘p with period 2 x, where p is chosen so that zo + peiP 
is in the region of analyticity off for all V. 

The nature and location of the singularities of a function f(z) lead to the following 
classification: 

1. By Liouville’s theorem if f(z) has no singularities, it is a constant. 
2. If f (z) has only an isolated singularity at infinity, it is called an entire (or integral) 

function. If the singularity is a pole of order n, then the entire function becomes a 
polynomial of order n. 

3. If f(z) has only poles in a finite region, then it is called a tieromorphic function 
of z in that region. If f(z) has only poles in the finite z plane and either is analytic or 
has an isolated singularity at infinity, then it is called merom,o+phic. 

4. If f(z) has a branch point it is a multivalued function. 
2.26 Residues. At an isolated singular point a function f(z) may be represented 

by the Laurent’s series 

f(z) = 2 

(0 

a& - ZO)~ + 
c 

b,(z - z,)-” 

n=O n=l 
ca 

The expression 
c 

b,(z - zO)-n is called the principal part off (2). The coefficient bl 

n=l 

is defined as the residue of the function f (z) at the point ZO. The formula for bl is given 
from the Laurent’s expansion by 

61 = & Ic f(z) dz 

where C is a simple closed curve enclosing ZO. 

The fundamental t,heorem of the calculus of residues follows: 
Residue Theorem. Let f(z) be analytic except for a finite number n of isolated 

singular points within and on the closed curve C; then 

11 

J 
c f(z) dz = 2rri 

c 
Ri 

j=l 

where RI, . . . , R, arc the residues at the n singular points. 
When f(z) has a simple pole at .zo and has the form 

f(s) = go 
h(z) 
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where g(zO) # 0, h(zo) = 0, and h’(zo) # 0, the residue of f(z) at zo is 

s(zo) .~ 
h’(a) 

2.26 Conformal Mapping. Let w = j(z) denote a mapping or transformation 
from the z plane to the w plane. If the transformation preserves the magnitude of 
angles but not necessarily the sense, it is called isogonal. If in a mapping both the 
magnitude and sense are preserved between every pair of curves through a point z,,, 
then the mapping is called conform&. 

If a function is analytic at a point 20, then either f’(z) = 0 or the mapping w = f(z) 
is conformed at 20. A ctitical point zo of a mapping is a point at which f’(zo) = 0. 
One of the most important results of a conformal mapping is that a harmonic function, 
that. is, a function K(z,y) which satisfies Laplace’s equation (PK/IW) f (#K/ayZ) = 0, 
remains harmonic under the change of variables that arises from the conformal map- 
ping w = u + iv = f(z); that is, (PK/&z) + (PK/&P) = 0. Furthermore, a 
boundary condition of the type K&y) = C or of the type dK/dn = 0, where dK/dn 
is the normal derivative, transforms into a boundary condition of the same type. 
Therefore by using analytic functions it is possible to find in many cases a function 
that is harmonic in a given region and satisfies boundary conditions of the above type. 

The transformations w = (az + ,!?)/(a~ + 6), where a6 - B-r # 0, called linear 
fractional t.ransformations, are conformal. In particular they map circles, which 
include straight lines, since the lines are circles with infinite radius, into circles. 
Other important properties of linear fractional transformations may be found in the 
references. 

The transformation 

w = CJ(z - xpqz - x2)-1’2 . . . (z - ~n--l)-~n-‘d.z + Cz = f(z) 

where Ci and CZ are arbitrary constants and the integral is an indefinite integral, is 
called a Schwpz-Christoffel transformation. This mapping takes the z or real axis 
in the z plane into a polygon of n sides in the w plane. The points WC = f (zi), where 
i = 1,2,. . . , n and z,, = m , are the vertices of the polygon. The exterior angles 
at the vertices wi (i = 1, 2, . . . , n - 1) are given by kirr. The exterior angle at 
w,, is *given by 

k dr = 27r - (/cl + k* + . . . + k,-l)?r 

2.27 Analytic Continuation. Riemann Surfaces. The identity theorem listed 
under analytic functions leads to the important concept of analytic continuation. 
Let fl(z) bc an analytic function in a region D1, and let f*(z) be an analytic function 
in a region D2. Furthermore, let the regions DI and DZ have a subregion in common 
in which the functions fi(z) and f*(z) coincide completely (or even on a curve in the 
subregion). The functions fl(z) and fi(z) then define the same analytic function 
P(z). fl(z) and fi(z) are called analytic continuations of each other. Furthermore, 
fl(z) and f2(z) are called elements of (or partial representatives of) the function F(z), 
which is analytic over the composite region formed by D1 and D,. 

It is often possible to start with a given element, such as a Taylor’s series at a given 
point and by using power (or Taylor’s) series at other points extend the domain of 
existence of the function by analytic continuation. If the process of analytic con- 
tinuation is carried out as far as possible, the resulting function is called the complete 
analytic function. A complete analytic function is called single-valued when its value 
and behavior at every point zo are always the same, independent of any path by which 
it may be reached by analytic continuation. 
that is not single-valued. 

A multiple-valued function is a function 

In considering multiple-value functions it is convenient to introduce the geometric 
concept of a Riemann surface. A Riemann surface is a generalization of the z plane 
consisting of a surface of more than one sheet arranged vertically. On each point 

, 
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of this surface the multiple-valued function has one and only one value, and the func- 
tion is therefore single-valued on the surface. 

2.3 Special Functions 

Since over a thousand special functions have been investigated, it is possible to 
consider here only a few of the more important functions of mathematical and reactor 
physics. - 

2.31 Gamma Functions. Factorial, Polygamma, Beta. Definitions. 1. THE 
GAMMA FUNCTION I’(Z) is an analytic meromorphic function of z with simple poles at 
z = -n, where n = 0, 1, 2, . . . and with corresponding residues (-1)*/n !. The 
following conditions then determine r(z) uniquely: 

a. I+ + 1) = C(z). 
b. If r(z) is real and positive, then (z) is real and positive. 
C. r(i) = 1. 
d. [(dz/d9)r(z)]r(z) - (dr/dz)z > 0 when z is real and positive. 

2. WEIERSTRASS DEFINITION : 

- = zerz fi [ (I + f) eh*] 
1 

r(z) n=l 

where y, the Euler-Mascheroni constant, is defined by 

J 

7 = iim 
(c 

1 
:-1nJ 

J-+- 3 > 
= 0.577215665 . * . 

j=l 

3. EULER’S FORMULA: 

exists except for .z = -n, n = 0, 1, 2, . . . . 

4. EULER’S INTEGRAL: 

r(z) = om e-Wldt 
I 

holds for the real part of z greater than zero (Re z > 0). 

Functional Equations: 
r(2 + 1) = 2r(2) 

r(z)r(l - 2) = -.L 
sin 7rz 

r(z)r (z + k) 17 (2 + z) r (2 + n+) = (2*)(1-‘)/Zn~~-n’r(nz) 

For n = 2 this becomes r(z)r(z + $8) = (2a)~+2~+r(2z). 

Special Values: 

r(n + 1) = n! = n(n - l)(n - 2) . 2 . 1 (7% = 0, 1, 2, . . .) 
r(l) = o! = 1 r(2) = 1 

r’(1) = -7, the Euler constant 



SEC. 3-21 
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+I@) = $jj = $ [In r(z)] 

L(z) = -$ [ICl”4(2)1, n = 2,3, . . . is called a polygamma function. 

!Mz) = (-1Wjo & 

!bn(z + 1) = a(z) - [(-1)-n!]z-” 

Sterling’s Formula or Asymptotic Formula for Large 1.~1: 

where 

ln r(z) = (2 - 34) In 2 - .a + 35 In 2r + R(Z) 
N-l 

R(z) = 2 ( - 1)n-1 

7L=l 
2n;;1:sl, + RN(~) 

where larg 21 < a 

and where 

The numbers Bz, are the Bernoulli numbers and are defined by B, = 1, B1 = 56, 
B *.,+I = 0, and 

B2n = 2(2n)! m 1 

-2 (2*) ** /pi 
k=l 

In particular, n! = n”e-” 42rrn [I + r(z)], where 

0 < +I < kz + & 

The Beta Function. This is defined by 

B(m,n) = 
/ 

o1 p-1(1 - p-1 & 

where Re* m > 0 and Re n > 0. 
Alternative definitions are 

B(m,n) = /o* (1 fii-+n dt B(m,n) = /OT” sin*m-1 p cos2”&-1 ,,, dp 

B(m,n) = $$$$ = B(n,m) 

2.32 Hypergeometric Functions. Ordinary, General, Confluent. Ordinary Hype+ 
geometric Function. The hypergeometric differential equation 

~(1 - Z) ‘$ + [c - z(a + b + 1)) ‘2 - abm = 0 

has at the origin the general solution 

w(z) = AF(a,b;c;z) + Bz’-cF(a + 1 - c, b + 1 - c; 2 - c; z) 

*The n&&ion “Re” means “the real part of.” 
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where A and B are arbitrary constants and a, b, and c are parameters. The function 

where r(a + n) 
(& = r(a) =(a+n-l)(a+n-2)...(a+l)a (a)0 = 0 

is called the hypergeometric function or series. The circle of convergence for this series 
is the unit circle 1.~1 = 1. 

The hypergeometric equation can also be written in the form 

[e(e + c - 1) - ~(0 + a)(0 + b)]w = 0 

where the operator B - z(d/dz). ‘The singularities (regular) of the equation occur at 
0, l,and m. Because of these singularities solutions of the hypergeometric equations 
are also often written in terms of the arguments l/z, 1 - z, l/(1 - .a), z/(1 - z), and 
(1 - z)/z. Kummer’s 24 solutions and various relationships among them involve 
these arguments and may be found in the references. 

The six functions F(CY + 1, 8; 7; z), F(a, fl f 1; 7; z), and F(cY, 8; y + 1; z) are 
called contiguous functions to the functions F(n,fl;r;z). Gauss’s 15 recursion formulas 
relate the contiguous functions by expressing one function in terms of two others. 
These formulas may also be found in the references. 

In the references are found various integral representations, both real and contour, 
for the hypergeometric function. The best known integral representation follows: 

r Cc) 
/ 

1 
F(a,b;c;z) = 

r(b)r(c - 6) 0 
t”-‘(1 - t)c--b--l(l - tz)-” dt 

Ret >0 Reb>O I4 < 1 

When .z = 1 and Re (a + b - c) < 0, 

F(a,b;c;l) = 
r(c)r(c - a - b) 
r(c - a)r(c - b) 

Generalized Hypergeometric Functions. The generalized hypergeometric differential 

[ 0 i (0 + bi - 1) - z i (0 + ai)] w = 0 
j=l i=l 

is of the order max (p, q + 1). It has singularities at 0 and m if p # g + 
0, 1, and m if p = q + 1. The solution regular at z = 0 is 

1 and at 

pFq(u~, . . . ,aP;bl, . . . ,b,;z) = =F,(a;b;z) = 
c 

(ad, . . . (a,),, Z- 

n=O (bdn . . (b,), n! 

and is called the generalized hypergeometric series. It is assumed that the bs are not 
negative integers. In general this series converges for all finite .a if p < q, converges 
for (z/ < 1 if p = q + 1, and diverges for all z # 0 if p > q + 1. 

Contiguous relations, integral representations, and relations among various argu- 
ments for the generalized function may be found in the references. 

Confluent Hypergeometric Functions. The conjluent hypergeometric function, or 
Kummer function, 

m 

9l(a;b;z) = nzo $$ 2 
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satisfies the Kunzmer’s d$erential equation 

zs+(b-z)z$!-aw-0 

Kummer’s first formula is 
iFi(a;b;z) = e”lFl(b - a; b; -2) 

Kummer’s second formula is 

1Fl(a;2a;2z) = ezoFl(a + 55; $@) 

The three independent recursion formulas or contiguous relations are 

F(a;b;z) = F(a - 1; b; z) + iF(a; b f 1; z) 

(a + z)F(a;b;z) = aF(a f 1; b; z) + z k-i? F(a; b + 1; z) 

(o - b i- l)F(a;b;z) = aF(a + 1; b; z) + (1 - b)F(a; b - 1; z) 

An integral representation when Re b > Re a > 0 is given by 

r(b) 1 
F(a;b;z) = _____ 

r(a)r(b - Z) 
tc-I(1 - t)b-u--let. & 

3-E 19 

Most of the functions of mathematical physics can be expressed in terms of general- 
ized hypergeometric series. Examples of functions that can be expressed as special 
cases of a zF1 or a iPi appear in some of the following articles. 

2.33 The Cylindrical or Bessel Functions. The cylindrical, or Bessel, functions 
are solutions of the Bessel differential equation 

22 d$ + z 2 + (22 - vyw = 0 

This equation has a regular singularity at z = 0 and an irregular singularity at z = Q). 
The functions 

10 
(-Ilk z 2k+” 

Jv(z) = c k!r(k Y + 1) 2 
k=O 

0 

N,(z) - Y,(z) = -$; [d,(z) cos Y7r - L(z)] 

H.(‘)(z) = J,(z) + iY,(z) H,@)(Z) = J,(z) - iY,(z) 

arc all solutions of the Bessel differential equation. 
of the j&-t kind. 

J,(z) is called a Bessel function 
The subscript Y is the order of the function. 

Neumann function or a Bessel junction of the second kind. 
Y, (or N,) is called a 

WY(l) and Hy@) are called 
fLTSt and second Hankel junctions or Bessel junctions of the third kind. 
that J,(z) and Y,(z) arc real if Y is real and z is positive. 

It may be noted 

If Y is not an integer, it is customary to choose J,(z) and J-,(z) as the two linearly 
independent solutions of Bessel’s equation. When Y = n, where n is a positive integer, 
it is necessary to use J,(z) and Y,(z) = lim Y,(z) for the two independent solutions, 

-?I 
since 

J-,(z) = (-l)“J,(Z) 

The Bessel coeficients, that is, the Bessel function of the first kind of integer order, 
occur in the following expansion: 

exp [>$z(t - t-l)] = y .Jn(z)P 
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The Bessel differential equation has the form, when z is replaced by iz, 

,g !g + z g - (9 + Y+J = 0 

The functions 

I,(z) = e--i~~~rJy(ze 
+9 = Jo k!Iyk : Y + 1) 

* w+u 

0 5 

and 

which are solutions of this equation, are called, respectively, modified Bessel functions 
of the first and second kind. Again if Y is not an integer, Z,(z) and Z-,(z) are taken as 
the two independent solutions, and if Y is an integer, IV(z) and K,(z) are taken as the 
two solutions. Z,(z) and K,(z) are real when Y is real and z is positive. 

Some of the more useful relations involving Bessel functions follow. 2, is used as 
an abbreviation for cd,(z) + c2YV(z), where cl and CI denote arbitrary constants. 

Functional Equatknw 

z,-1 + z,+, = ; z, 

JJ-“+I + J,-J-, = ?-!%!d? 
n-z 

J,Y+1 - Y,J,-I = 14 

Derivatives: 

ZvKr+l + I,+lK, = t 

Z’, = ‘z [Z,-, - Z,,,] = 2 z, + Z”4 = 5 Z” - z”+l 

[ZYZ&Z)] = wz”-l(az) 

Zfo = -z, z’l = zo - 1 z1 
z 

2 sin WT 
J'J-, - J’-,J, = - - 

7rz 

J',Y, - J,Y’, = ’ 
7rz 

2 sin WT I’,Z-, - Z’JY = - - 
*z 

Z’,K, - K’,Z, = - ; 

Integral Representations: 

J,(z) = b /u cos (2 sin cp - ncp) do 

2T-44 z ” 1 
J&) = lyY + 34) 2 0 I 

o (1 - t2)r-W co9 zt dt 

Representation as a Hypergeometric Function: 

Jv(z) = (;)’ r(;T l) l~1 (v + f; 2~ + 1; 2iz) = $f$$ OF1 (’ + ‘; - a”) 
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General Dij’erential Equation: 
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if m # 0 and b # 0, 
.sw” + azw’ + (W + c)z = 0 

w = z +f Z, (i & z-2) 

y = A 2/(1 - a)2 - 4c 

Special Cases: 

Jn(4 = Y-P&) = && 

J-t&) = - Y>r,(Z) = g-$ 

HYZ(‘)(~) = G4 eiz H>$(*)(z) = & e-c’ 

2.34 Legendre Functions. The Legendre functions are solutions of Legendre’s 
differential equation 

(1 - 2”) g - 22 2 + [ Y(Y + 1) - &)I w=o 

where Y and P are arbitrary parameters. The functions 

P,r(z) = ~~(~)~*‘F(-..~+1;1-p;~-~~j 

and 
. Q,r(z) = e+*7rs4 r(v + p + 1) (2* - l)Mr 

2Vfl , r(Y + W) ZY+p+l F ~.+~.+l,a~+a~+~;~+~,~ 
( > 

are linearly independent solutions of Legend&s equation. P/(z) and Q/(z) are 
known respectively as Legendre functions of the first and second kind. Since Legendre’s 
equation is not changed when z is replaced by -a, p by -p, and Y by - (Y + l), it 
follows that 

. P,*r( hz) P-,-I*P( +z) Qv”( kz) &+I**( kz) 

. are also solutions of the equation. 
The most common Legendre functions occur when p = 0. The superscript 0 is 

dropped in this case, and the Legendre functions are written as P,(z) and Qy(z). In 
case p # 0, the functions are often called associated Legendre functions. 
simple relationships exist : 

The following 

and . 

Pvk(z) = (~2 - l)k/zdF 

Qvk(z) = (22 - l)%” ‘5 k = 1, 2, . . 

When Y is a nonnegative integer n, the functions P,(z) become polynomials called 
the Legendre polynomials. In hypergeometric function notation 

p&) = (-1)“(2n)‘F 
( 

en n + 1. 1. $ 
2*n(n!)2 ’ 2’ 2’ > 

and p,,+,(z) = (-1)“(2n + ‘jfzF 
2”“(n!)* 

sn , n + !. 2. $ 
2’ 2’ > 

. 
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A convenient formula for the Legendre polynomial is 

P,(z) = &, gm (2” - 1)” 

[SEC. 3 

known as Rodrigues’ formula. These polynomials form an orthogonal system on the 
interval [ - I, 11 and have all their roots real and simple and between - 1 and 1. 
Legendre polynomials occur in the following expansion: 

The 

Do 

(1 - 2zt + t*)-$4 = 
c 

P&P 
n=O 

Some useful relations follow: 

Functional Equation: 

Derivatives: 
(72 + ~)P,,+I = z(2n + l)P,, - nP,-l 

(2n + l)P,, = P’,+I - P’,-l 
nP,, = zP’, - P’,-, 

Laplace’s Integral: 
(n + l)P,, = P’,+I - zPI, 

P,(z) = 5 lo’ [(z” - 1)54 CDS ‘p + z]” dp 

Special Cases and Values: 

P,(s) = 1 P,(z) = z = cos ‘p P%(X) = jd(322 - 1) = >i(3 cos 28 + 1) 
P,(z) = $4(5x3 - 32) = >4(5 cos 3p + 3 cos $7) 
P,(z) = jS(35.c4 - 30x2 + 3) = j&(35 cos 4p + 20 cos 2ip + 9) 

P,(l) = 1 P,(-1) = (-1)” P,,-tl(Oj = 0 P,,(O) = (- 1)“ $& 

A Sum Formula: 

1z 

c 
W + l)pk(z)pk(y) = (n + 1) 

pn(x)pn+l(Y) - P,(Y)P,,I(Z) 

k=O 
Y--s 

Orthogonality Relations: 

/ 
’ P,(z)P,(z) dz = 0 

-1 
n # no 

I 

1 
_ 1 P&j2 dz = -?.-- 

2n + 1 

2.35 Orthogonal Polynomials. Tschebyscheff Polynomials: 

T,(z) = cos (n arc cos z) U,(z) = sin (n arc cos 2) 

T,(z) = F (n, -n; a; 9) 

/ 

1 Tm(z)ll’n(z) dz = o 

-1 2/l-9 
ifm#n 

5r =- 
2 

ifm=n#O 

=7 ifm=n=O 

The Tschebyscheff polynomials of the first and second kind, T,(z) and U,(z), are 
linearly independent solutions of 

(1 - 9)w” - zw’ + n*w = 0 
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Zfermite I: ‘olynomials: 

ANALYSIS 

H,,(z) = (- l)*L&/z -!?(e-~a/2) 

ifmfn 

= (2,)%! ifm=n 
H”, - zH’, + nH, = 0 

Laguerre Polynomials: 

ezz-a dn 
L,(p)(z) = __ - (e-%zn+a) = v IF1(-n; a + 1; z) 

n! dzn 

J 
Om e?z.~Lm(a)L,,(a)(z) dz = 0 ifmfn 

= q+ r(1 + a) ifm=n 

L,(a)(z) satisfies zw” + (a -t 1 - z)w’ + nw = 0. 

Jacobi Polynomials: 

p,,cn’a+) = (--l)“(l - z)-“(1 + z)-8 d” . 
2%! 

____- dz” [(l - z)a+=(l + #+“I 

P,,ca.Bl(z) = 9 F (-n, n + 01 + ~3 + 1; (Y + 1; f - f z) 

P,,@)(z) satisfies 

(1 - z2)y” + [B - a - z(a -t @ + 211~’ -I- n(n + a + 13 + l)y = 0 

Gegenbauer Polynomials: 

Cne(z) = s&F (-n, n + 2a; LY + g; 9) 

2.36 Dirac Delta Function. In many problems of physics and engineering it is 
expedient to introduce a quantity 6(r) called the Dirac delta function (or just 6 func- 
tion). 6(x) is not a proper function in the sense of having a definite value for each 
value of the independent variable. Formally a Dirac delta function 6(x) is defined 
to be zero except at x = 0, that is, 

but is such that 
6(x) = 0 X#O 

/ 
w S(z)dz=l 

-cG 

This formal definition does not give a clear picture. It may, however, be inferred 
that the 6 function is very large near z = 0 but is zero outside a very small interval 
about x = 0. 
6(z) with z. 

It is not important in applications to know the precise variation of 
For example, the 6 function may be defined by 

6(x) = hm &j(x) 
A-O 
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where 

X-C-~ 
2 

-;<x<; 

A 
x>- 

2 

The following formal formulas may be used with caution: 

/ 
--- f(x) 6 (2) dx = f(O) 

I 
-mm f(xP(z - a) dx = f(a) 

f(x)&(x - a) = f(aP(x - a) 
x6(x) = 0 8(-x) = 6(x) 

I 
:w s(a - x)6(x - b) dx = s(u - b) 

6(x* - a’) = .& [6(z - a) + 6(x + a)1 a>0 

Lupkzce TTamfOTWZ: 

/ 
om 6(x)ecaz dx = 1 

I 

-f+i- 
a(x) = $ 7--im ea* dx 

Fourier Transform: 

I 

OD 
6(x)ecaZ dx = 1 

--oo 

6(x) = & /-i.- eeiaZ dx 

Derivative of Step Function. Let 

S(x) = 0 -m < 2 < 0 
O<x<- 

= t(x) = S’(x) 

2.37 Other Functions. Incomplete Gamma Functions: 

“&4x) = / 
o2 e-V-1 dt = $ lFl(a; 1 + a; -2) 

Iyu,x) = 
I 

zm e&t*- dt = r(a) - r(a,x) 

ETTOT Functions: 

Erf x = ’ 
/ 

e-“dt = >4-y(>$,x*) = ~91(35;45;-x*) 
0 

/ 

co 
Erfc x = e-*‘dt = jsr(+$,x*) = >$rs” - Erf x 

z 

Exponential and Logarithmic Integrals: 

El(x) = -Ed(-2) = /,- e-‘t-‘dt = r(O,x) 

E(x) = 
/ 

= 02 
- = Ei(lOg 2) 

0 log t 
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Sine and Cosine Integrals: 

si(x) = 
/ . 

%*ddt = i [&(iz) - &(-ix)] 
- t 

Si(x) = 

Ci(x) = 

Fresnel In’legruls: l/j 

C(x) = (2*)-S”” 
I:’ 11 
II’ ! ‘!I j, 

S(x) = (2=)-s oz t-54 sin t dt 
J 

Elliptic Integrals: 

/;I. I ~ 
;‘I j 

l-x .I 

/l/l i 

j:/:/ j, / 

First kind: F(xJk) = lo‘ [(l - x*)(y px2)]fP 

Second kind : E&k) = 1” (E)” dx 

Third kind : n(x,v,k) = r ,. ,. “\I,. dxa, I. 1* ^>.lL 
J” (1 t VX‘)l(l - X‘)(l - WX‘)J7” 

Complete Elliptic Integrals: 

F(l,k) = K(k) = $&F(+$,>$;l;k*) 
E(l,k) = E(k) = +j%F(->&j$;l;P) 

?r(l,v,k) = r(v,k) 

3 SERIES AND EXPANSIONS OF FUNCTIONS 

3.1 Infinite Series 

Let SO, ~1, SZ, . . . be an infinite sequence of numbers, where SO = a,,, s1 = a,, + al, 
and generally 

Sn = a0 + a1 + . . . + a, 

then if the sequence (s,,) has some convergence property, the injinite series 

m 

2 
a, = a0 + al + . . * 

n=O 

is said to have that convergence property. The numbers sn are called the partial 
m 

sums. If the infinite series 
c 

a, is convergent, the limit of the sequence {s,,) is 

n=O 
called the sum or value of the series. If all the terms a, are such that a,, 2 0, then 

m 

c 
a, is called a series with positive terms. -4 series whose terms are alternately posi- 

n=O 
tive and negative is called an alternating series. 

An infinite series 

m 

a, is called absolutely convergent if the series of absolute values 

c 
Ia-1 is convergent. If an infinite series is convergent but, not absolutely con- 

n-o; 
/ 
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vergent, it, is called conditiona& convergent. The following results deal primarily with 
m 

\ 
convergence properties. The summation symbol Z by itself will imply 

z 
n=O 

3.11 Fundamental Theorem. A necessary and sufficient, condition that the series 
Za, is convergent is that for any E > 0 there exists a number N = N(E) such that, for 
every n > N and every integer m 2 1, 

ISn+m - Snl = Ian+1 + an+2 + . . . + Un+kl < e 

3.12 Comparison Test. Let Zc,, and Zd, be two series with positive terms, and 
furthermore, let ZC, converge and zd, diverge. If a, 5 cn for all n greater than some 
N, then Za, converges. If a, 2 d, for all n greater than some N, then Za,, diverges. 

Root Test. If the series with positive terms Za, is such that for all n > N, 

$%<a<1 

then the series is convergent. However, if for all n > N, 

l;/L>l 
then the series diverges. 

3.13 Ratio Test. If for all n > X, a,, > 0, and 

-<a<1 
Un 

the series ZU, is convergent. However, if for all n > N, 

a,,l > 1 
f&l 

the series ~a,, is divergent. 
3.14 Alternating Series. An alternating series Za, is convergent if IanI < (a,-,I 

and if lim a,, = 0. The error made in taking the sum of the first n terms of the 
It-SOD 

alternating series ~a, as an approximation to the sum of the series is less than the 
absolute value of the (n + 1)st term. 

3.16 Rearrangement Theorem. The sum of an absolutely convergent series 
remains the same whatever change is made in the order of the terms of the series. In 
a conditionally convergent series it is possible to rearrange the order of the terms so 
that the new series converges to any desired value. 

3.16 Cauchy’s Products. If two series Zcj and Zd, arc absolutely convergent 
ez i , 

with respective sums C and D, then the Cuuchy’s product 
cc 

ckdi--k = ZC&& is 

j=O k=O 

also absolutely convergent and has the sum CD. 
rg 

3.17 Geometric Series. The geometric series 
c 

r* is convci-gent if /rI < 1, 

n=O 
with sum l/(1 - T), and is divergent if /r/ >_ 1. 

c-3 

3.18 Harmonic Series. The harmonic series 
c 

(l/n) is divergent. 

?%=I 
n 

3.19 Hyperharmonic Series. The hypcrharmonic series 
c 

(l/&) is convergent 

n=l 
when k > 1 and is divergent when lc 5 I. 
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3.2 Infinite Products and Continued Fractions 

3.21 Infinite Products. An infinite product 

i dj = d,dnd, . . . d, . . . 

j=l 

is a symbol representing the sequence of partial products 

p, = dldzda . . . d,, 

An infinite product n df is said to have a convergence property if for everyj greater 

j=l 
than some J no factor dj vanishes and the sequence of partial products beginning at J 
has the convergence property. It follows that a convergent infinite product has the 
value zero if, and only if, one of its factors is zero. Since the sequence of factors dj in 
a convergent infinite product tends to 1, it is customary to write the product as 

El ua m 

n (1 + aj) instead of fl dj. It is common to write ?r in place of n . 

j=l j=l 
The product ?r(l + aj) is called absolutely convergent if the productfz[l + la./) con- 

verges. It can be shown that the product r(1 + ai) is absolutely convergent’if, and 
only if, Zaj converges absolutely. 

More generally it also can be shown that if Zaj2 converges absolutely, then ~a, and 
~(1 + a,) converge and diverge together. 

The value of an infinite product ~(1 + i,,) is unaltered by any rearrangement of its 
factors if, and only if, the product converges absolutely. 

It may be observed that formally 

7r(l + Uj) = eln LaU+r,)] = ,z In (l+aj) 

3.22 Continued Fractions : 

F, = Dar, = ao + bJD1, 
DI, = al f bz/Dz, 
. . . . . . . . . . . . . 

Dn--lsn = an-l + b,/a, 

where aa, al, . . . , a,, bl, . . b, are given. The evaluation can be made by 
beginning with D,,-I,,, and workin; back. The result F, is called a continued fraction. 
If there are infinitely many ai and b;, and if every b; # 0, an infinit,e sequence of’,, pl, 

F,, . . . is defined that may or may not have a limit F. In case it has a limit this 
limit will be called the value of the infinite continued fraction, which is then s;ld to 
converge and which can be represented 

F = ao + b& + b& + . . . 

The slant line and bar may be understood here as a special sign of aggregation signify- 
ing division by everything that follows. 

b,, 
A finite continued fraction F, is a function of 2n + 1 variables Q, . . , a,, 

. . . , b,. By the ordinary rules of algebra one can express 

where A, and B, are polynomials in these 2n + 1 variables. It is easily verified that 

: 
8, = a0 Bo = 1 
AI = aoa~ + bl BI = al 
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and in general, it can be shown inductively that 

Ai = aiAi-1 + &As-z 
Bi = a<Bi-1 + biBi- 

[SEC. 3 

As functions of the variables a and b, the Ai and Bi are called continuants. If one 
represents 

~~ = K bl, . . A 
ao,ar, . ,ai > 

thus exhibiting the variables, then 

Bi = K a::; 
(, ). 

. ,bi 
. . ,a< 

Two important properties of continuants are expressed by the identities 

K bl, . . e ,bi bi, . . . ,bl 
a0,at, . . . ,ai ai,ai-1, . . ,ao > 

and K clbwmbz, . . . ,c,,.ev&, 
> 

=cl . . c,K b I, b . . . ) n 
ao,crar,cza2, . . . ,cnarr aO,al, . . . ,a* > 

for any cl, . . . , cn. In particular it is always possible to choose the cs so that every 
a1 = a* SC . . . = 1 or so that every b, = bz = * * 1 = 1, provided only that no 
ai = 0 in the one case and no bi = 0 in the other. 

If every bi = 1, then 8’ is said to be periodic or recurring in case for some positive 
integers n and Y it is true that ai+v = ai whenever i 2 n. The value of any periodic 
continued fraction can be expressed in the form F = (A + Bs$)/C, where A, B, and C 
are polynomials in the variables ao, . . , a,, and conversely. 

If the ai or the bj or both are functions of a variable 2, then the continued fraction 
defines a function F(s) wherever it converges. For questions of convergence the 
following identity is often useful: 

F, - F,-1 = (- l)“--lbrb* . . . b,IUMLd 

The following are some useful continued fractions: 

tan x = 2/i - x2/ij - x2/Z - x2/7 - - * + 

tanh z = x/i + x2/3 + x2/z + x2/? i- . . . 
tan-r 2 = x/i + 1222/5 + 22x2/~ + 3W/? + . . . 

tad-lx = x/i - 12x2/2 - 2W/i - 32x2/7 - . . . 

expz = i/i -x/i +x/2 -x/3 -t-z/X -z/Z + . . 

(1) 
(2) 
(3) 
(4) 
(5) 

The series 
3.3 Power Series 

a~ + alx + a2x2 + . . + + a,x” + . . * = 
c 

anxn 

n=O 

where x is a variable and the numbers a,,, called coejicients, do not depend upon x, is 
called a power series in z. For power series the primary question is for what values of 
z does the resulting series of constants have various convergence properties. The 
following theorem applies to power series that converge for some value of z and 
diverge for other values. 

3.31 Fundamental Power Series Theorem. There exists a positive number r such 
that Za,zn converges absolutely for every IzI < r but diverges for every 1x1 > r. If 
x is a real variable, the interval ( -r,r) is called the interval of convergence and r is 
called the radius of convergence. If the real variable z is replaced by a complex 
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variable .a, the number r is again called the radius of convergence and the circle 121 = r 

is called the circle of convergence. 
ca 

The series 
2 

a,(x - ZO)” is called a power series in zz - so. Ietting 2’ = x - x0, 
T&=0 

this seri es converges by the above theorem when (5 - 201 = lx’1 < r. 
x0 IS called the center of the series. 

The quantity 

Some of the properties of power series in a complex variable are discussed in the 
article on complex variables. Some operations for power series follow: 

In the common interval of convergence for two power series Za,xn and Zb,z”, 

2 mm + 2 bnzn = 2 (a, f bn)xn 

(j. ajxi) (1 bmxn) = 2 (2 a”-$j) 2” 

n=O n=O j=O 

I,et 2, a, and B be in the interval of convergence; then 

. f (2 ..x*) = 1 nct,x”-1 

jy&&&xg =p&x*+1 

Table 5 presents some of the common power series. 

Maclaurin Series for f(z): 

1. j a&?* 
?L=O 

P’(O) where a, = - 
n! 

Table 6. Power Series 

Taylor Series for f(z): 

2. E a”(2 - 20)” 

n=O 

where an = ‘y 

Binomial: 

n(n - 1) 
3. (I + 21)” = 2” + nz”-‘y + ___ zn-*y2 + 

Z! 
n(n - l)(n - 2) Zn-Jy” + . 

3! 

When n is a positive integer, the series terminates at y* 

n(n - 1) 
4. (1+z)“=1*1(2+-2** 

n(n - I)(n - 2) 

Z! 3! 
$y + SC1 

When n is a positive integer, the series terminates at zn 

Ezponential and Logarithmic: 

5. e =I+~+~+~+‘~* = 
. . 

$nm (1 + i)” - 2.718281828 

6. e’ =l+Z+g+;+... 

7. a= ~l+.Ino+@g+(I+.+. 

8. Inz = ~+f(z+)‘+~~y2)“+. . . =>)h 

9. lnl-2[~~+~(~~)I+~(~)s+. . .] Z,O 

(6) 

(8) 

f:i, 1 

I( 

!I;1 : j 
1 j/l ‘, 
)/ii: j 
(i’j !, 
/j/j : 

,j;ij’ 

,/i /,I 
I’ Ii,; 

jj! 
iI’ 

;jl 
1,) 
‘/I i l/i I 

jiii ,’ 

I& 
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Table 5. Power Series. (Continued) 

10. In (1 + 2) = = - $622 + f&J - f/ad + . . 21 < 1 

11. In (a + 2) = In a + 2 
[ g$+:(&Y+a(il&Y+. 

12.1n(~)=2(z+~+~+...) d<l 

T+,,,ometric and Imerse Trigonometric: 

13.sioz=z-g++-$+“’ 

14. COB z = 1 - g + “+ - $ + . . 

15. tan z = z + $ + 2g + z + g + LT.2 < ; 

1G.cscz=~+~+~!+3~+... 22 < + 

1,. Se0 z = 1 + $ + $ + 5;;’ + . . 
*g 

29 < 7 

zl 
18.aotz-~-;-~-g~-4~- ... 2’ < *’ 

1 - 

32” 3. 52’ 
19. sin-1 z = z + & + - + ___ + ’ . ’ z* < 1 

. 2.4.5 2.4.0.7 

20. tan- z = ; - ; + $ - & + . . z* > 1 

21. tan-’ z = z - 4$d + )fzj - ?4z’ + . . . 99 < 1 

22. .wc- z = ; - ; - & - 
3 3.5 - - 

2.4.5~5 2.4.8.7=’ - . . . 21 < 1 

23. cos-l z = a - sin-’ z, cot-1 z = i - tan-~ z. mc- 2 = ; - set-’ z 

Ifyperbolic and Inverse Hyperbolic: 

24. sinh z = z f $ f 2 + $ -f- ’ ’ 

25. oosh z = 1 + $ + 5 + $ + ’ ’ ’ 

2,j. tnnh z = z - ; + “$ - g + . 
*2 

a? < 7 

325 
27. sinh-1 z = z - & f - 

. 2.4.5 
-G7+... z’<l 

[SEC. 3 

1 a>O,--a<z<- 

28. sinkI 2 = log 22 + & - 
3 

__ +2.;.;5.(i.‘+ . 2’1 2 . 4 42’ 

3 
29. coah-’ z = f log 22 - & - ___ - 

3.5 - . . . z>l 
2.4.4~’ 2.4.6.82” 

30. tanh-1 2 = z + f + ; + ‘i’ + z* < 1 

CT6 
31.lnsinz=lnz-~-~--~~-“~ 22 < d 

1 . 

26 172s 
32.Inoosz= -;-g-4j-2520- ... 22 < ; 

33. In tan z = In 2 + g + g + gg + . . 
9 

22 < ; 

34. @in* = 1 + z + $ - 3?$ - !!$ - 3% - 5% + 

35. eCOll = e (1 - $ + ‘$ - ?g + . . .) 

36. etllnr = 1 + z + 2_’ + 32’ + gx + 3x + 
2! 3! 4! 5! 
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3.4 Orthogonal Functions 

3.41 Sturm-Liouville Series and Other Expansions. Two vectors a and b in 
n-dimensional space may be represented by rectangular coordinates; that is, 

a = (aI, a, . . . ,a,) 
n 

and b = (b,,bz, . . . ,a,). The square of the length of the vector a is given by 
c 

ai’. If 

j=l 
n 

c 
u;* = 1, the vector a is a unit vector and is said to be normed or normalized. The 

j=i 

cosine of the angle between the two vectors a and b is given by 

;;‘ Uibj CDS e = ___ j=l . [(i a~; (2 bi’)]” j=l j=l 
(10) 

The quantity 
c 

oibi, denoted by (a,b), is called the inner product (or scalar product) 

j=l 
- II 

of the two vectors. The quantity 
c 

u$ = (a,a) is called the norm of a. The vectors 

j=l 
a and b are orthogonal (or perpendicular) if (a,b) = 0. A set of vectors \aj ] is called 
orthonormal, that is, orthogonal and normalized, if (ai,ak) = 6ik, where 6i/z is Co- 
necker’s 6, which is 0 or 1 according to whether j = lc or j # k. An arbitrary vector 
g in n-dimensional space can be expressed as a linear combination of a set of 7~ ortho- 
normal vectors [ai); that is, 

g= 2 (g,aj)aj = 2 Cjaj 

j=l j=l 

Most of the notations used for n-dimensional space can be extended not only to 
countably infinite spaces but also to certain spaces of funct.ions. An example of a 
countably infinite space is the special Hilbert space consisting of all points 

m 
a = (at,@, . . . ,CJj, . . .) 

such that 
c 

uj* = (a,a) < m. 

j=l 
In dealing with a function f(z) it is customary to speak of f(z) as a point or a vector 

in the function space. Let the real functions f(z) and g(s) be defined on the finite 
interval a 5 z < b; then the inner product of the two functions is given by 

J abf(z)ds) dx = (f,Y) 
If the inner product is sero, that is, (f,g) = 0, the two functions arc said to be orthogo- 
nal. The norm of the function f(x) is given by 

I ab [f(x)P dx = (f,f) 
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A set of functions (ji(z) ) is said to be orthonormal on the interval a 5 z < b if 

The concept of orthogonality for functions of a single variable can be generalized in 
two particular important ways. If j(z) and g(z) are complex functions of a real 
variable z on the interval a < z < b, then j and g are said to be orthogonal in the 
Hermitian sense if 

I 
- 

a’ f(x)g(x) dx = (f,g) = 0 

where s(z) is the conjugate of y(z). Often there is associated with a set of real func- 
tions jj(Z) a function w(z) 1 0, on the interval u 5 z _< b, such that 

/ 
b w(z)jj(s)j~(x) dx = 6ij 

a 
(1’3) 

In this case the set is called orthonormal on [a,b] with respect to the weight junction w(z). 
The orthogonality concept can also be extended to infinite intervals and to functions 
of more than one variable. 

The functions jr(z), jz(z), . . . , jn(z) are called linearly independent on the interval 
n 

a 5 z 5 6 if the only constants Cj that satisfy the equation 
c 

C,%.(Z) = 0 for all X 
‘= 

of the interval are the constants cr = ct = . . = C, = 0: ‘A set of orthogonal 
functions is likewise a set of linearly independent functions. An orthogonal set 
(jj(z) ) is called complete in a given function space if the only element of the space that 
is orthogonal to every jj(z) is the zero function; that is, (j,jj) = 0, for all j, implies 
f = 0. 

Let {pi(s)), G = 1,2, . . .), be a countable orthonormal set of real functions on the 
interva1.a 5 z < b, and consider the possibility of representing a function j(z) on that 
interval by 

f(z) = 2 Ci’Pi(z) 
j=l 

Formally multiply both sides of this equation by ~b(k(z), and integrate both sides over 
the interval, the integration being carried out term by term on the right-hand side. 
This leads to the formal result 

(j,W) = f Cj(rPjjcPk) = Ck 
j=l 

The numbers 

Cj = CjjVj) = / abfWcpi(+ dx j = 1,2, . . . 

are called the Fourier constants or coeficients of j(z) corresponding to the orthonormal 
system (vi(Z) ). The series 

co 

c 
Ci(Pj(x) where Cj = (j,cpi) 

j=l 

is called a generalized Fourier series or expansion corresponding to f(x). 

(18) 
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Given a finite orthonormal set (Pa] (j = 1, 2, . , . , n), the best approximation 
in the mean, or in the sense of least squares, to the function j(z) on the interval 

n 

a 5 5 5 b for the quantity 
c 

ojqj(z) is given by letting ai be the Fourier coefficients 

j=l 

Cj = (.ftVj) = 
/ 

ab f(z)p&) dx; that is, 

[ [f(z) - 2 ajpj(z)]* dx 
j=l 

is minimized when ai = Cj. 
The relation 

n n 

1 (.fiVpi)’ = 2 Ci* < /.” [f(~)Pdz = (f,f) 
j= 1 j=l 

is true for any n and is known as Bessel’s inepualitv. If ( ‘pI (2) ) is a complete ortho- 
normal set,‘then Parseval’s theorem 

2 (f,qj)* = 2 Cj* = Ia” [f(z)]‘dx 
j-1 j=l 

(20) 

holds. 
3.42 Sturm-Liouville Series. Systems of the following types: 

kY’(Z)l + @P + S)Y = 0 
sty(a) + my’(a) + may(b) + w’(b) = 0 
PI?/(~) + Pr~l’b) + by(b) + &y’(b) = 0 

(21) 

where the prime (‘) denotes differentiation with respect to x, are known as Sturm- 
Liouville systems. The coefficients r(z) > 0, g(z), and p(z) are taken to be continuous 
functions of z in the interval a 5 z 5 b, and X is an arbitrary parameter. The great 
interest in S-L (Sturm-Liouville) theory arises largely from the fact that many 
boundary-value problems in physics and engineering lead to questions that can be 
answered by using S-L theory. 

Consider the general second-order linear differential equation 

fib)Y” + fl(X)Y’ + [fo(z) + udS)lY = 0 (22) 

where X is a parameter and where j2 > 0, ji, Jo, and go are continuous functions of z. 
The general homogeneous boundary conditions 

WY(~) + my’(a) + w/(b) -t w/‘(b) = 0 
BIY(~ + &.~‘(a) + Pay(b) + &y’(b) = 0 

are taken to be linearly independent. Upon dividing the general differential equation 
by jz(z) and then multiplying the result by T = exp [J(fJfz) dz], the S-L equation 

b-Y’b)l + LAP + SIY = 0 (23) 
where p = (gO/j& and g = (jo/j~)r, is obtained. It follows that the S-L system is 
quite general. 

The differential equation of an S-L is self-adjoint. An S-L system is called self- 
adjoint when 

(a& - Bmz)r@) = (~83 - d%)+) 

The most common type of self-adjoint S-L system has two additional conditions. 
First p(x) is assumed not to vanish for a 5 x 5 b. In this case both r(z) and p(z) 
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can be assumed greater thaii WK. The second condition is that the boundary condi- 
tions are of Sturmiun type; that is, 

wy(a) + w/‘(a) = 0 and PI?/(b) + t@‘(b) = 0 (24) 
where Ia11 + I4 > 0 and IBll + IL%1 > 0 

The following three theorems summarize the primary results of S-L theory: 
Oscillation Theorem. The system of the Sturm-Liouville differential equation with 

Sturmian boundary conditions and positive p(z) and r(z) has an infinite number of 
real characteristic numbers that may be arranged in a monotone increasing sequence 
X0 < Xi < xz < * . . that tends to + 0). Corresponding to each simple eigenvalue 
A,,, there exists an eigenfunction qPn(z), unique except for a multiplicative constant. 
Each (O,(Z) has exactly n zeros in the interval a < z < b. 

Expansion Z’heorem. Given an arbitrary continuous and piece-wise differentiable 
function f(s) that vanishes at the end points of the interval when vpo(z) vanishes; then 
the series 

oa 

c 

b 
G&h(Z) where c,, = 

I 
p(x)f(xh(x) dx = (f/d (25) 

(4 
n=O 

converges uniformly and absolutely and has the sum f(s). 
The eigenfunctions fulfill the orthonormality conditions 

where p(x) is the weight function. The normality can easily be attained by letting 

‘pi(X) = Vj(VjjVj)-” = ‘Pi [I 
b P(x)~pi*(x) dx 1 -?h a 

Equi-convergence Theorem. Given that f( ) z is integrable over the interval (a$); 
then the S-L expansion behaves as regards convergence in the same way as an ordinary 
Fourier series. 

The transformation 
Y(z) = (pr)X’ly 

where l = 21 ” dx z=- 
/ 0 Ja r 

and J=kLb(F)Hdz 

takes the S-L equation into the Liouville normal form 

,g + [k2 - q(z)lY(z) = 0 (97) 

where k2 = PX and q(z) = (p~)-4”(dZ/dzZ)(P7)4/4 - J2(q/p). 
If the interval under, consideration is infinite, or if r vanishes at either or both ends 

of the interval, the S-L system is called singular. Results for singular S-L systems may 
be found in the references. In certain problems, such as those occurring in reactor 
theory, it is necessary to consider generalized S-L systems that have discontinuous 
coefficients or solutions. This arises because the problem is multiregion and has 
interface conditions. The results of ordinary S-L theory can often be extended to 
these cases. 

The trigonometric series 
m 

%a0 + 
c 

(a, cos nx + b, sin nx) (28) 
n=l 
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is called a Fourier series corresponding to f(x) in the interval (-TIT) if its coefficients 
are given by 

1 R 
a n=- cos nt dt and sin nt dt 

7r I --*f(t) b, = 1 “, f(t) 
7r I 

When f(x) is an odd function, that is, f( -2) = -j(x), a,, = 0 and the corresponding 

series is known as the Pourier sine series. If f(x) is an even function, that is 

f(--xl = f(x) 

b, = 0 and the corresponding series is called a Fourier cosine series. More generally 
the Fourier scrics corresponding to f(x) in the interval a 5 x 5 b is 

01 
1 b 

- / f(t) dt fd- 
b-a a Cl b-an=1 a 

b f(t) cos y-u 2) & 
(29) 

The exponential form for a Fourier series is 

2 ck exp (E) where ck = & r f(t) exp (- z) dt (30) 

kc--m 

A number of theorems giving conditions under which a Fourier series corresponding 
to a function converges in some manner to that function are given in the references. 
The following is an example of a Fourier theorem. 

Fourier Theorem. If f(x) is sectionally continuous on the interval ( -?T,?T) and 
periodic with period 2s, then the Fourier series corresponding to f(x) in the interval 
( -?T,T) converges to the value +$[f(x+) + f(x-)] a every point where the right-hand t 
and left-hand derivatives exist. 

The set (l/A, cos nx/z/;;, sin nx/&) forms a complete orthonormal set for 
the space of all functions that are sectionally continuous, are assigned the value 
>&[f(x+) + f(x-)] at the points of discontinuity and the value M[f( -?r+) + f(r-)] at 
the end of the intervals, and possess right-hand and left-hand derivatives at every 
point of the interval (-r,~). 

Fourier series not only are special cases of S-L series but indeed are the simplest 
cases of S-L series, being associated with the differential equation y” + Xy = 0. 

Legendre Series. The Legendre expansion or series for a function f(x) in the interval 
( - 1,l) is given by 

co 
2 anPn (2) where a n = %+1 I 

2 I 
_ 1 fW’nW dt (31) 

n=O 

and where P,(x) is the Legendre polynomial of degree n. 
special case of an S-L series. 

The Legendre series is a 
Legendre’s equation 

d [ (1 - x2) $1 + n(n + l)y(x) = 0 z 
is seen to be an S-L equation where T(X) = 1 - x2, p(x) = 1, g(z) = 0, and 

X = n(n + 1) 

The set ((n + J@Pn(x), (n = 0, 1, 2, . . .) ) forms an orthonormal set; i.e., 

I 

1 
--1 Pn(t)pm(t) dt = (n + !5)-%, 

i 
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Fourier-&s& &pan&on. The Bessel function J,(Xr) satisfies the Bessel equation 

(33) 

For each n this is seen to be an S-L equation where r = x, p = x, and g = -n2/x. 

Let Xi (j = 1, 2, . . .) be the roots of the equation J,,(xa) = 0 and let 

N,j = 
/ 

oa t[J,,(~~t)]~ dl = f [J~+I(QJ)I* 

The set of functions 

1 
J?dXjX) 

pni = (iv,,) 1 

forms an orthonormal set in the interval (0,~) with respect to the weight function Z; 
that is, 

I 
oa tpnj(t)~nk(t) dt = &j 

A Bessel expansion or series for a function f(z) in the interval (0,~) is given by 

m m 
c cn,rp,j = c UjJnO jx) 

j=l j=l 

(34) 

where C-j = 
I 

,,a tpnj(t)f(t) dt and ~j = &, /o” tJa(Ajt)j(t) dt 
n, 

4 DIFFERENTIAL EQUATIONS 

4.1 Introduction 

A diflerentiul equation is an equation that involves a differential or a derivative. 
The equation may contain algebraic and transcendental functions of a differential 
or a derivative. It is assumed t.hat a differential equation is not an identity. 

It is difficult to make a simple yet complete classification of differential equations 
because not only is the number of classes and subclasses needed immense but also any 
particular differential equation is likely to appear in many classes. Nevertheless 
certain broad classifications are commonly adhered to and have proved useful. The 
primary division of differential equations results from the number of independent 
variables that are present. An ordinary differential equation is an equation containing 
one independent variable, one or more dependent variables, and at least one derivative 
of a dependent variable with respect to the independent variable. By contrast, a 
QUT~~CZ~ differential equation contains two or more independent variables, one or more 
dependent variables, and at least one partial derivative of a dependent variable with 
respect to an independent variable. 

A differential equation is also categorized by giving its order and degree. The 
order of an equation is the order of the highest derivative found in the equation. (The 
word differential is omitted in front of equat,ion if no confusion results.) The degree 
of an equation is the power to which the highest derivative is raised. To this defini- 
tion should be added the requirement that in stating the degree of an equation 
it is implied that the equation is a polynomial in all the derivatives. 

If the dependent variables and their derivative occur only to the first power or 
degree, and not as products, an equation is called linear. For a linear equation, the 
coefficients of the dependent variables and their derivatives are therefore functions 
only of the independent variables. An equation that is not linear is called nonlinear. 

By a solution of a differential equation is meant a set of functions of the independent 
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variables, one function identified with each dependent variable, that when sub- 
stituted in the equation results in an identity in the independent variables. It is 
implied that the solution functions have at least as high derivatives as are needed in 
the differential equation. 

The general solution of an ordinary differential equation of nth order and one 
dependent variable contains n, and only n, arbitrary constants. A particular solution 
of an ordinary differential equation of nth order and one dependent variable is obtained 
when the n arbitrary constants are given special values. Not all solutions of an 
ordinary differential equation need to be particular cases .of the general solution. A 
solution that is not such a particular case is generally called a singular solution. 

The general solution of a partial differential equation of nth order, m independent 
variables, and one dependent variable is a solution containing n arbitrary functions 
of m - 1 variables. The question of the existence and the uniqueness of the solu- 
tions is not considered here, and the references should be consulted. 

4.2 Ordinary Differential Equations 

4.21 DiiIerential Equations of the First Order. The general differential equation 
of the first order has the form 

F(Y’,Y,X) = 0 

where the prime denotes differentiation with respect to X. This is the implicit form 
for the first-order equation. The equation 

Q = Y’ = f(Y,X) 

is the explicit form for the first-order equation. There exist a number of special 
types of implicit and explicit equations whose solutions can be obtained by elementary 
methods. The following list presents the more common types and their solutions. 

Vuriubles Separable: 

P = f(XMY) /-“z = [fb) dx 

Homogeneous Equation: 

y = xv (36) 

1. Now the equation P(x,y) dx + Q(x,y) dy = 0, where P(tz,ly) = W(x,y) and 
Q(tz,ty) = PQ(x,y), has this homogeneous form. 

2. An equation p = j[(az + by + c)/(ax + py + r)] may be brought into the above 
homogeneous form, when ap - ab # 0, by the linear transformation x = u + d, 
y = v + e, where u and v are new variables and d and e are constants. If ufi - ab = 0, 
the equation can be put in the variables separable form by either substitution 

v=ux+by+c 

or substitution v = ax + Py + Y. 

Linear Eouution: 

P +f(x)Y = g(x) y = e-h(z) (a - rehgdx) h = fjdx (37) 

Bernoulli’s Equation: 
Q +f(X)Y = dX)Y” (33) 

becomes the linear equation Q + (1 - n)j(x)y = (1 - n)g(x) under the substitution 
.u = y'-". 
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Dependent OT Indepmdent Variable Missing: 

1. p = f(zl) and p = g(x) are equations of the variables separable type. 
2. Y = f(p); x - c = IIS’(P)IPI dp. 
3. x = f(p); Y - c = IP~‘(P) dp. 

Clairaut Equation: 

Y=Pz+f(P). either Y = cx +f(c) or z+f’(p) =o (39) 

a singular solution.’ 

Exact Equation: 

P(r,Y) dx + &(x,y) dY = 0 is an exact equation if 0 = g (40) 

/Pdx+/ (Q-;/Mdx)dy=c 

is the solution. 

Integrating Factor: 

A function H(x,Y) is called an integrating factor or Euler multiplier if 

HP(x,v) dx + HQ(x,v) dv = 0 
is an exact equation. 

._ 

There exist certain other well-known first-order eauations whose solution cannot be 
obtained by elementary methods. The following t&es may be listed, and for further 
information concerning them the references should be consulted. 

Generalized Riccati Equation: 

2 = f(X)Y2 + dX)Y + h(z) 

Special Riccati Equation: 

dv z + wyz = bx” 

Abel’s Equation of the First Kind: 
R 

dy - -= 
dx c 

fi(X)Y” 

i=O 

Abel’s Equations of the Second Kind: 
3 

h(S)Y + d”)lY = 1 fdX)Y’ 

i=o 

Binomial Equation: 
dy n’ 0 z 

= f&Y) 

4.22 Linear Differential Equations. The general linear differential equation of 
the nth order has the forln 

1) ,” 

2 
fk(X) 2 = g(x) 

i=o 
(41) 

It is generally assumed that the coefficients f;(x) and g(x) either are continuous and 
one-valued or are meromorphic functions of x t.hroughout some region. Furthermore, 
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it is usually assumed that fo(z) has at most isolated zeros in this region. If g(z) - 0, 
Eq. (41) is called homogeneous. 

The expression 

)I 

LE 

c 
f(d) g = f0-g +fl g$ + . . . + ftb-1 $ + fr, 

i=o 

is called the linear differential operator of order n. The following properties are com- 
mon to all &h-order linear differential equations: 

1. If y = y1 is a solution of the homogeneous equation L(y) = 0, then y = cyl is 
also a solution of the equation, where c is any arbitrary constant. 

2. If y1, y2, . . . , yP are p solutions of L(y) = 0, then 

y = ClYl + czyz + . . + Cp?/p 

is also a solution of the equation, where ~1, cp, . . . , c, arc arbitrary constants. 
3. If y0 is any solution of L(y) = g and y1 is any solution of L(y) = 0, then 

is a solution of L(y) = g. 
Y = Yo + y/1 

4. The complete primitive of L(y) = 0 has the form 

Y(z) = Cl?ll + czyz + . . + CrLYn 

where cl, ct, . . . , cn are n arbitrary constants and yl, yz, . . . , yn are n linearly 
independent functions that are solutions of L(y) = 0. The general solution of 
L(y) = g(z) has the form y = yo + Y, where ye is.a particular integral, that is, any 
solution of L(y) = g(z) containing no arbitrary constant, and where Y is the com- 
plementary function or complete primitive of L(y) = 0. 

Certain other concepts are useful in the discussion of linear differential equations. 
The determinant 

Yl yn . . ’ yn 

A@/,, . . . ,yn) - y’l y’2 . . . y’- 
. . . ) . . . . . . . 
ylkl) yz’“-” . . . y,h-1) 

is known as the Wronskian of the functions ~1, ~12, . . . , y.. The vanishing of the 
Wronskian of yl, . . . , yn, at any point of the region being considered means that the 
functions are linearly dependent. Conversely if the Wronskian does not vanish, the 
functions are linearly independent. A set of n linearly independent solutions of 
the nth-order equation L(y) = 0 is called a fundamental set or fundamental system. 

The adjoint equation to the equation 

?l 

L(Y) = 
c 

f(d) 3 = 0 

i=o 

is the equation 
n 

L*(o) = 
c 

(-l)iTi- = d”[f(,,-i,v1 o 

i=o 

The operator L* is called the formal adjoint operator to the operator L. If L = L’, 
then the operator L and the equation L(y) = 0 are called self-adjoint. The relation 

WY) - 2/L*(v) = & [P(Y,V)l (42) 
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where P is a linear function of y and v and their first n - 1 derivatives, can be verified 
easily, and is known as the Lagrange identity. 

The equation 

A(y) E 2 a.-i$$ =0 

i=o 

where the a,-i are constants, is a homogeneous linear equation with constant coefiients. 
This special linear equation not only is one of the most important and common in 
applications but historically is the first equation of a general type to be completely 
solved. The substitution y = e mz in this equation leads to the characteristic or 
auxiliary equation 

n 

c 
a,-imi = 0 

i=o 

If this auxiliary equation has n distinct roots, rl, TZ, . . . , r., then the general solution 
of A(y) = Ois 

y = clerlz + crer+ + . . . + c,,el+ 

where the cs are arbitrary constants. If m of the roots of the auxiliary equation are 
equal to some value s, then the portion of the general solution corresponding to s is 

(~1 + c2x + c3x2 + . . . + cmxm-l)erz 
The equation 

n 

c 
c&-ix’ f$ = f(X) 

i=o 

where the a,-< are constants, is known as Euler’s differential equalion. The substitu- 
tion z = ez transforms Euler’s equation into a linear equation with constant coeffi- 
cients. This follows from the relation 

xig=$(f-1). -. (-$-i+l)y 

4.23 Linear Second-order Differential Equations. The second-order linear equa- 
tion is a particularly important and common equation in. physics and engineering. 
The general equation of this type has the form 

f(x)y” + g(x)y’ + h(x)y = r(x) 

The differential expression 
L(y) E fy” + gy’ + hy 

has the adjoint expression 

L*(v) = fu” + (27 - g)ff’ f (f” - g’ + h)u 

(45) 

if f’ = g, then L(w) = L*(w) and L(w) is self-adjoint. Although L(y) is not self- 
adjoint, the expression 

1 eFcz)L(y) 
f 

where F(z) = 
/ 

=gdx 
af 

is self-adjoint. Since any second-order linear homogeneous equation can therefore 
be made self-adjoint by the multiplication of a suitable factor, there is no loss of 
generality in considering only the self-adjoint case. 

The normal form for the homogeneous equation L(y) = 0 is U” + lu = 0, where 
I(x) = (h/f) - %Wf)* - WCslfY. The left-hand side of the normal equation is 



y” + gy’ + hy = r 

can be obtained by the method of variation of constants. Assume a solution of the 
nonhomogeneous equation of the form y = ci(z)yi(~) + c&)y&), where CI and cz 
are functions of 1: that are to be determined. If c’iyi + c’zy2 is set equal to zero, then 
y’ = ciy’i + czy’z. Furthermore, y” = ciy”i + czy”z + c’iy’i + c’~y’2, and therefore 
substitution in the nonhomogeneous equation gives c’ry’l + c’zy’a = P. This last 
equation and the equation c’ryl + ~‘2~2 = 0 can be solved for c’i and ~‘2. Direct 
integration then gives 

. 
cl(x) = A - 

/ 
r(t)yz(Q dt r(tM(t) dt 

W 
czb) = B + 

I W 

where W = yiy’s - yzy’i is the Wronskian function and A and B are constants. The 
solution of y” + gy’ + hy = r is given by 

,Y = Y&) 
I 

F dt - yl(x) j- $ dt + AY,(x) + BY&) 

The method of solving a differential equation by the use of power series consists 
OD 

of assuming a solution of the form 
c 

a,,xn+P, substituting it formally into the differ- 

n=O 

ential equation, collecting terms in like powers, and setting the resulting coefficients of 
each power equal to zero. The objective of this process is to determine the p and the 
a,‘s and thus a solution. An elementary illustration follows. Consider y” + y = 0, 

OD 

and assume y = 
c 

a,xnfp, a0 # 0. Direct substitution gives 

f&=0 

m al 
c (71 + p)(n + P - l)a0+P-* + 

c 
a,x”+p = 0 

n=o n=O 
m m 

The shifting of indices gives 
c 

a,P+P = 
c 

a,-2xn+p--2. The collecting of like 

n=O n=2 

terms results in 
co 

P(P - l)avxp-* + (P + l)pa09-’ + 
c 

[(n + p)(n + p - l)a, + a,-*lx”‘p-* = 0 

IL==2 

The coefficients of the powers are zero when p(p - 1) = 0, (p + l)pai = 0, 

(n + p)(n + P - l)a, + an--2 = 0 

(n 1 2). The indicial equation p(p - 1) = 0 is satisfied if p = 0 or p = 1. First 
let p = 0. In this case (p + l)pai E 0 is also satisfied for arbitrary al, for example, 
o1 = 0. The remaining equation becomes 

ANALYSIS 

obtained by letting y = u exp (- i [g dx in the expression L(y). Z(S) is called ) 

the invariant function of the equation. 
The method of variation of constants (or parameters) and the solution of equations 

by the use of series are both applicable to nth-order linear differential equations. For 
illustrative purposes these techniques are considered for the second-order case. 

If the complete primitive ciyi(z) + CZ~Z(Z), that is, the general solution of the 
equation y” + gy’ + hy = 0, is known, then the solution of the equation 
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-ad +a+-4 a,, = ___ = 
nn - 1 n(n - l)(n - 2)(n - 3) = ’ ’ 

. = (-l).‘/‘Z 

for n even and a,, = 0 for n odd. Consequently 

ca 

y = a0 
c 

(-1)” &! = a0 cos x 

m=O 

This solution is easily obtained or verified by using the properties of the cos z. If 
p = 1, it is easy to obtain a series solution, which is ao sin x. 

4.3 Partial Differential Equations 

4.31 First-order Equations. Let xi, ~2, . . . , x, be n independent variables, let 
v = U(X1,22) . . ,x,) be the dependent variables, and let 

av au 
Pl = az, 

p2=dz2 ..’ 

au 
P* = az, 

The general partial differential equation of the first order has the form 

P(p1,pz, . . . ,PTqV,Xl, . . Fn) = 0 (46) 

When n = 2, it is customary to put x1 =. x, x2 = y, p = au/ax, and q = avlay, so that 
the equation has the form 

~(P,W,~,Y) = 0 (47) 

First-order equations are called “linear” if the equation is of the first degree in the 
partial derivatives. Furthermore, they are called nonlinear if at least one partial 
derivative is present to some degree other than one. 

The linear equation for two independent variables has the form 

P(Z,Y,U)P + Q(~,Y,Vh = WX,Y,4 (43) 

and is called Lagrange’s linear equation. The simultaneous ordinary differential 
equations 

dx dy dv - =- =- 
P ,Q R 

are called the subsidiary equations for Lagrange’s equation. If f(z,y,v) = ci and 
g(z,y,v) = c2, where ci and c2 are arbitrary constants, are two independent solutions 
of the subsidiary equations, then any arbitrary functional relation &,g) = 0 satisfies 
Lagrange’s equation. p(f,g) = 0 is called the general solution OT integd of the 
equation. For example, the equation ap + bq = 1 has the subsidiary equation 
dxla = dy/b = dull. The subsidiary equation has the two integrals 

x-au-f=cl and y-bv=g=cc, 

and the general integral is 
(p(x - au, y - bv) = 0 

Subsidiary equations and the general integral are similarly obtained for the linear 
equation with n independent variables. 

Consider the nonlinear equation F(p,q,v,x,y) = 0. A complete integral of this equa- 
tion is any solution that contains two arbitrary constants or parameters a and 8. The 
complete integral may be denoted by f(x,y,v,a,@ = 0 and may be interpreted geo- 
metrically as a two-parameter family of surfaces. A particular integral is obtained 
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from a complete integral by assigning a and p particular or definite values. If 01 and 6 
are eliminated from the three relations 

then the eliminant ‘p(x,y,v) = 0, if it satisfies the original equation, is called a singular 
integral of the equation. A singular integral, if one exists, may also be found by 
eliminating p and p from the relations 

Next let 6 = ~(a) so that f[x,y,u,a,&a)] = 0 represents a one-parameter family of 
surfaces. .The totality of solutions of the equation F = 0, which are derived from the 
equations 

fb,Y,%Wb)l = 0 2 = 0 

upon eliminating a for all possible choices of ‘p, is known as the general integral. For 
each choice of ‘p and a the equations f = 0 and af/aa = 0 represent a space curve 
called a characteristic curue. 

Charpit’s method may be used for solving nonlinear equations of first order. This 
method is based upon determining a second equation of the type G(p,q,v,s,y) = 0 that, 
along with F = 0, can be solved for p and q in terms of x, y, and a. The p and q thus 
obtained can be inserted in 

p dx $ q dy = dv 

and an integrable expression for dv may result. It can be shown that any solution 
w(p,q,u,x,y) = a containing p or q or both, of the system 

dp & dv dx &t -Z-E z-s- 
Fz + PF, F, + @‘v -pF, - qFFp -F, -F, 

(50) 

where F, signifies aFlax, can be used for G; that is, G = w - a = 0. This method 
can be generalized to problems involving more than two independent variables. 

4.32 Second-order Equations. The general second-order equation has the form 

F(vzm,vz,zm . . ,vz;zj, . . . ,vz.,r,,,~z~, . . . ,vz,,,v,x~, . ,xn) = 0 (51) 

where vzizj signifies Pv/(axi axi). Almost all second-order equations of interest are 
in the class of quasilinear equations. The equation ?I 

c Aiivz:,r, = B 

i,j=l 

where the Aii and B are functions of the x1, . . . , x,,, v, v,,, . . . , v,,, is called 
qua&near. Although most of the following concepts apply to quasilinear equations, 
it is easier to consider the linear equation 

7s n 

c 
Aijv,;zi + 

c 
Bivz, + CV f D = 0 

i,j=l i=l 

where the A<j, Bi, C, and D are functions of XI, x2, . . , xn. 
In order to classify second-order linear equations it is customary to deal with the 

coordinate transformations 
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n 

Zk = 
c 

C&Xi 

i=l 

where the matrix a = (ah;) is nonsingular with real elements. It is possible to find 
such transformations so that the above linear equation takes the canonical form 

n 

c 

A;j*v,,,j + . . . = 0 (54) 
ij=l 

whereAii*= ~Iifi=j<m<nandAii*=Oifi#jorifi=j>matagiven 
point (xX0, . ,x,O). 

With the use of this canonical form it is possible to classify a linear equation at a 
given point (xr”, . . . ,x,,O) as follows: If at the point 

1. All the Ai{* # 0 and have the same sign, then the equation is called elliptic at 
the point. 

2. All the Aii* # 0 and if all but one Ai<* have the same sign, the equation is called 
hyperbolic at the point. 

3. All the Aii* # 0 and if there exist more than one positive Aid* and more than one 
negative Aii*, the equation is called ultrahyperbolic at the point. 

4. Some Asi* = 0, the equation is called parabolic in the broad sense at the point. 
5. Only one Aii* = 0, the other Aii* all have the same sign, and the coefficient of 

av/azi corresponding to the zero A<i* is not zero, then the equation is called parabolic 
at the point. 

‘A linear equation is called elliptic, hyperbolic, etc., in a region if it has that character 
at every point in the region. 

Next consider the equation 

AT + 22-h + Ct + DCw,w,q) = 0 (55) 

where r = a2vlax2, s = a%/(aa at), and t = a%/aPand where the coefficients A, B, and 
C are functions of z and y that are twice continuously differentiable. This equation 
is called elliptic, parabolic, or hyperbolic according to whether the determinant 

AB 
A= BC = 

I 1 
AC - B* is greater than zero, equal to zero, or less than zero. The 

associated first-order ordinary differential equation 

A dy’ 
0 dx 

-2B&+C=O 
dx 

has for solutions two one-parameter families of curves in the xy plane, 

fl(X,Y) = a and f&&Y) = B 

In the hyperbolic case when A < 0, these two curves, called characteristics, are real. 
In the elliptic case, A > 0, the characteristics are complex. Finally for the parabolic 
case, A = 0, the curves coincide. 

The characteristics can be used to obtain the following normal forms: 

Hyperbolic: 
vao = Fk4,va.,vd 

or vff - VT? = F(rtw~,wn) cu=r+7 8=i-1) 

Elliptic: 
vPf + vt,,, = F(t,rl,vr,~~) a=<+i7j @=r--iv 

Parabolic: 

%I = F(.r,v,wr,) a=@=[ 
. 

7 arbitrary function of x and y. 
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Cauchy Problem. The Cauchy problem consists of finding a solution of the system 

s = Gi (t,xl, . . ,Xlv,Vl, . . ,V‘V, . , 
akj 

atkOaxlh . . ax,Prb ’ ’ ’ > 

which satisfies the 
(i, j = 1, 2, . . . , M; k. < n; k~ + k~ + . + ha 5 n:) 

a% 
- = Hik(x1, . . ,xn) 
atk 

(k = 0, 1, . . . ) W-1) 

It should be noted that the number of equations is equal to the number of unknowns; 
the independent variable t, time in physical problems, is singled out; if ni is the order 
of the highest derivatives of U; that are present, then dna/atn~ must also be present; 
and the functions Hik are all given in the same region in the (~1~x2, . . . ,xn) space. 

The simplest example of a Cauchy problem is that of finding a solution of 

dv 
- = F(t,v) 
dt 

where v(to) = vo 

For partial differential equations a simple example is given by the vibrating-string 
equation 

a% a% -=- 
at2 a39 

where v(to,x) = HI(x) is the initial displacement and where vt(to,x) = H,(x) is the 
initial velocity. 

The Cuuchy-Kowalewski theorem states that if all the Cd are analytic in a neighbor- 
hood for all their arguments, and if the Hi!+ are analytic in the corresponding neighbor- 
hood of the point (~0, . . . ,x-O), then the Cauchy problem has a unique analytic 
solution in the neighborhood of (tO,xlO, . . . ,xnQ). 

4.33 Elliptic Equations. The simplest representative of the class of elliptic equa- 
tions is Laplace’s equation in two dimensions and rectangular coordinates, namely, 

g + ‘$ = 0 or f&2 + vyy = 0 

This equation often describes steady states, such as the steady temperatures in a 
homogeneous body or the equilibrium form of a membrane stretched over a curve. A 
function v is called harmonic or a potential function in a region D if it has continuous 
derivatives of the first two orders and satisfies vzz + vyy = 0 at every point of D. 

Consider an elliptic partial differential equation L(v) = 0 in a finite region D with a 
boundary p. The boundary-value problems for elliptic equations are classified as 
follows : 

Dirichlet’s Problem, or the First Boundary-value Problem. Find a function v that 
satisfies L(v) = 0 in the region L> and is equal to a prescribed continuous function f 
on the boundary I. The term v equal to a function f on I means that the limit 
approached by v as the boundary I is approached by points interior to D is f. 

Neumann’s Problem, or the Second Boundary-val,ue Problem. Find a function v that 
satisfies L(v) = 0 in the region D and whose outward normal derivative au/an at every 
point on the boundary r is equal to a prescribed function f. 

Mixed Problem, or the Third Boundary-value Problem. Find a function v that 
satisfies L(v) = 0 in the region D and, if f is a prescribed function on the boundary r, 
au + b(&/an) = f on the boundary I‘. If b E 0 or a = 0, then the mixed problem 
reduces to Dirichlet’s problem or Neumann’s problem. 

A few of the important results associated with elliptic equations follow: 
The Minimum-Maximum Property. If v is a harmonic function in a bounded 

region D and is continuous on the boundary r, then the values of v in D cannot exceed 
; its maximum on r or be less than its minimum on I’. 
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Poiswn’s Integral. 
where 

The solution of Dirichlet’s problem for the circle of radius R, 

and v = f(0) when r = R, is given by 

2?rR 

f(s) 

Ii? - T2 

R* + rz .-- 2Rr cos [(s/r) - 01 
ds (5’3 

Mean Value Property. 
mean value property in D. 

If v is a harmonic function in the region L), then v has the 
The function v is said to have the mean value property in 

D if at e$ery point P in D v(P) equals the average of v either over the circumference or 
over the area of every circle contained in D with center at P. 

Harnack’s Theorem. If v&r,y) (k = 1, 2, . .) are a sequence of functions har- 
monic in a finite region D, and if this sequence converges uniformly in D, then the 
limit function v(z,y) is harmonic in D. 

Requirement for Neumann’s Problem. In order that there exist a solution of the 
second boundary-value problem it is necessary that the integral off over the boundary 
r vanish; i.e., 

i. (g) ds - ,( f(s) ds = 0 

4.34 Hyperbolic Equations. The equation of a vibrating string 

azv a2v -=- 
at2 a22 

is the simplest example of hyperbolic equations. 
tion with the initial conditions 

The Cauchy problem for this equa- 

40,s) = f(x) and vt(O,z) = g(z) 

has the solution, called d’Alembert’s formula, 

v(t,x) = 3B[f(z + t) +f(z - Ul + 35 
/ 

z:;” g(s) ds (57) 

A formal solution of the wave equation 

vu = 7 v,;,; 
L 

i=l 

with the initial conditions 

v(O,51, ,xJ = f(z,, . . . ,&I) 

is given by 

and Vt(O,Z1, . . . ,xJ = 8(X1, . . . ,Zn) 

1 an-2 
v = (nf at”-2 /;” (t’ - r2)(*-a)‘*~&,,(x,r) dr 

where 

+ &, sl ot (P - r2)(n-J)‘*dJf(x,r) dr (58) 
I 

&&,r) = $; / / h(xl + ~a, , xn + P,J) dVn 

_ v,;npl / b 2r’ j- dxl + =$I ;&>$I + ‘d da, . . . da, 
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Jr, = 2T”/2 
rW-3 

where 

and P 2 = cq2 + . . ’ + a, 2 is the mean value of the function h in the n + 1 dimen- 
sional space. In three dimensions (n = 3) this formula is called Kirchhoff’s formula, 
and in two dimensions the formula is often called the Poisson formula. 

Methods for solving hyperbolic equations are discussed in connection with bound- 
ary-value problems. 

4.36 Parabolic Equations. The simplest parabolic equation is the one-dimensional 
heat-conduction or diffusion equation 

dv a=v -zz- 
at ax2 

This equation with the initial condition 

40,x) = S(s) 
and the boundary conditions 

. 
vO,O) = s1w and v(t,L) = QZW 

is the first boundary-value problem for the heat equation. 

4.4 Differential Equations of Mathematical Physics 

in Cartesian coordinates. 

4.41 Laplace Equation : 
VQ = 0 

1. Gravitational potential in a region free of mass 
2. Steady temperature, i.e., temperature in a body that depends on position but 

not on time 
3. Velocity potential of the irrotational flow of an incompressible fluid 
4. Magnetic potential 
5. Electrostatic potential in a region free of charges 

4.42 Poisson Equation : 
v21p = --Pew,z) 

1. Electrostatic potential in a region containing charges 
2. Steady temperature with internal sources 

4.43 Helmholtz Equation : 
V$ + k2‘g = 0 

k2 may be a constant (or parameter) or a function of position. 

4.44 Heat-conduction or Diffusion Equation : 

4.46 Wave Eauation : 

4.46 Telegraph Equation : 

V%p = a 2 + b $ f cp 
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4.47 Maxwell’s Equations : 

v.B =0 curlH =:$+:4-J D = EE 

v . D = 4*p curlE = -A??! 
c at 

B = *lI 

where E is the electric field vector, H is the magnetic field vector, c is the velocity of 
light, J is current density, p is the density of the charge, p is permeability, and e is the 
dielectric constant. 

4.48 Equation for the Transverse Motion of a Plate or Bar: 

a*AAq f $f = 0 

4.49 Equation of Continuity: 

$ + v - (PV) = 0 

where p is the density and v is the velocity vector. 

4.410 Navier-Stokes Equation : 

dV 
p dt = F - Vp + rV*v + ; V(V * v) 

where p is the pressure, p is the coefficient of viscosity, and F is the external force. 

4.6 Boundary-value Problems 

Although the term boundary-value problem can be used in connection with ordinary 
differential equations, difference equations, integral equations, and variational prob- 
lems, the term generally denotes a partial differential equation and a set of auxiliary 
conditions. Some authors separate such problems into initial-condition or boundary- 
value problems according to whether the conditions are specified at some initial time 
or all the conditions depend upon the space coordinates but not upon an initial state. 

The following two comments should be noted when dealing with boundary-value 
problems. First, the number of boundary conditions is usually equal to the sum 
of the orders of the highest derivative with respect to each independent variable. For 
example, in Problem I of Art. 4.51, the number of boundary conditions is four while 
in Problem 2 the number of boundary conditions is three. 

The second and most important comment is that, whenever possible, the problem 
should be broken into simpler problems that can be dealt with separately. In par- 
ticular, if nonhomogeneities occur in more than one of the equations, it is often 
possible to consider a set of simpler problems each with one nonhomogeneity. For 
example, consider the problem 

Vz, + Vw = A(x,Y) 
with the boundary conditions 

V@,Y) = fl(Y) V(w) = fz(vl) O<y<b 
V(z,O) = f&J V(G) = f&l 

This problem can be broken into five simpler problems. 
Let V = Ui + Uz + U3 + UC + W, where Ui, U2, U3, and UC satisfy the equation 

U,, + U,, = 0 and where W,, + W,, = A. Furthermore, 

W(O,y) = W(a,y) = W(x,O) = W(x,b) = 0 
UI(O,Y) = fI(Y) Ui(a,y) = UI(Z,O) = Ul(x,b) = 0 
U&,y) = jdy/) U,(O,y) = Uz(x,O) = Uz(x,b) = 0 
Udz,O) = fdx) U3(0,y) = Uda,y) = Udx,b) = 0 
U&b) =.fds) U4(O,y) = U,(a,y) = U,(x,O) = 0 
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The two most common methods of solving boundary-value problems are the method 
of separation of variables and the method of transforms, particularly the Laplace 
transform. The techniques of conformal mapping, integral equations, and calculus 
of variations can also be used for solving boundary-value problems. Two examples 
of both the method of separation of variables and the use of the Laplace transform 
follow. 

4.61 Separation of Variables. Problem 1. Solve the two-dimensional Laplace 
equation 

with the rectangular boundary conditions 

V(O,Y) = 0 V(%Yl) = 0 O<y<b 
VW) = f(x) V(x,b) = 0 O<x<a 

Formal Solution. Let V(x,y) = X(x) Y(y), and substitute into the Laplace equa- 
tion. This gives 

. 
CPX 
=Y+X$=o 

or upon dividing by XY, 
d2X/dx2 d2Y/dy2 -__ =- 

X Y 

Since the left-hand side of this equation is a function only of z and the right-hand side 
is a function only of y, both sides must be independent of x and y and therefore equal 
to some constant X. The term separation of variables is seen to be derived from having 
separated all the functions in an equation that depend only upon a certain variable 
from the other functions that depend upon the other variables. The constant X is 
called the separation constunt or parameter. 

The use of the separation constant results in the two equations 

!E = xx 
dx2 

daY and - = -xY 
@P 

Ifx = -2, the general solutions of these two equations can be written, when OL # 0, 
as 

X = A sin ~rx + B cos ax and Y = E sinh ay + F cash ay 

and when o = 0, as X = Ax + B and Y = Ey + F. 
At this point it is necessary to apply the boundary conditions. First consider 

V(O,y) = X(O)Y(y) = 0. This implies that B = 0 for all 01. Next consider 

V&Y) = X(a)Y(y) = 0 

In order that A # 0 and therefore X # 0, it follows that sin (~a = 0 or 01 = nr/a, 
where n is an integer. The conditions V(x,b) = X(x) Y(b) = 0 imply that 

E sinh olb + F cash ab = 0 

This will be satisfied if E = -D cash ab and F = D sinh ab. Hence 

The quantity 
Y = D sinh a(b - y) 

C,, sin nf x sinh n: (b - y) 

for any integer n, is seen to satisfy the Laplace equation and the boundary conditions 
&long the sides z = 0, x = a, and y = b. 



3-120 MATHEMATICS [SEC. 3 

In order to satisfy the remaining nonhomogeneous conditions V(z,O) = f(z), it is 
usually necessary to consider the expression 

m 

L 
’ C, sin f z sinh y (b - y) 

n=l 

where the C, are constants. It was noted that each term and indeed the sum of 
any finite number of terms of this series satisfy all the conditions, except perhaps 
V(z,O) = f(x). The question now is if, when y = 0, C, can be chosen so that 00 

c C, sinh nf b sin y z = f(z) 
n=l 

This is seen to be a Fourier series, and it is known that if C, sinh (nn/a)b = cn are the 
Fourier coefficients, 

2 a 
Cn = - a 

I 
o f(t) sin 7 dl 

then indeed the series converges to j(x), where f(x) is nearly an arbitrary function. 
The solution of the boundary-value problem is therefore given by 

sin “1 dt sin n” x sinh @r/a)@ - Y) 
a 1 a sinh n?rb/a 

Problem 2. Solve the heat equation for one-dimensional flow 

av&a22) 
at 8x2 

with the boundary conditions 

v(O,L) = 0 v(7r,L) = 0 1>0 
v(x,O) = f(x) O<x<r 

Fomml Solution. Let v(x,t) = X(x)T(Q, and substitute into the heat equation. 
This gives 

XdT&d2XT T’ X” or -=- 
dt dx 81 X 

Therefore, since in this last equation the function on the left is a function only of t and 
the function on the right is a function only of x, the equations 

. 
X” = m and T’ = XkT 

are obtained, where x is the separation constant. It is easily seen that the quantities 

C,eenzkt sin (nx) 

where n is an intcgcr, satisfy these equations and the homogeneous boundary condi- 
tions. Again consider a series of such terms 

m 

c 
Cneen21rt sin (nz) 

n=l 
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When t = 0, this reduces to the Fourier series 

3-121 

c c,, sin (ax) 
n=l 

and to f(z), provided the c,, are chosen as the Fourier coefficients, 

f(s) sin (ns) ds 

The solution of the problem is given by 

f(s) sin (7~) ds sin (nx) e--nrkl 
1 

4.62 Laplace Transform. Problem 3. Solve the heat equat.ion . 

au&s! 
at ,322 

with the boundary conditions 

u(o,t) = P’(t) lim U(s,t) = 0 t>o 
z-+ P 

U(x,O) = 0 O<x<l 

Formal f%diOn. Let U(Z,S) = I, ( U(x,l) ) = km e‘-a”U(x,t) dt. The application of 

the Laplace transform to the above problem results in the equations 

su(x,s) = k $J 

~(0,s) = f(s), lim ~(2,s) = 0, where f(s) is the transform of F(t). The solution of 

this transformgiroblem is 

utx,s) = f(s) exp [ -x (i)‘] 

Since 

exp [ -x ($‘;I = L { % (7&t3)-sh exp (- &) } 

the use of the convolution gives 

U(x,t) = z (~A)-44 lot 7-s F(t - 7) exp (- $) dr 

If F(t) = A, a constant, then 

U(x,t) = A erfc [ 5 (kt)-341 

Problem 4. Solve the vibrating-string equation 

Y,‘ = a2Yzz 
with the boundary conditions 

Y (x,0) = f(x) Y,(x,O) = 0 0<2<1 
Y(OJ) = 0 Y(lJ) = 0 t>o 
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The transformed problem becomes 
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S2Y(X,S) - s.K-c) = u*yzz 
Y(O,S) = 0 Y(b) = 0 

where y(x,s) = L[Y(x,Q]. The solution of this transformed problem can be obtained 
either by the use of variation of parameters or by transforming with respect to x. 
either case the solution becomes 

In 

P(X,S) 
Y(W) = ___ 

a sinh s/a 
where 

C(X,S) = sinh q c f(r) sinh s dz + sinh y /2rf(z) sinh (1 da 
a 

In order to invert the transform and obtain Y(x,t), it is necessary to use an inversion 
series. The terms in the inversion series correspond to zeros of sinh s/a, that is, the 
poles of y(x,s). 
(n = 1, 2, . . 

The sum of the two residues of e*ly(x,s) at s = +s,,, where s,, = inaa 
.), is given by 

where 

?$c, sin (nxx) [exq (in7rat) + exp ( -inat)] 

c, = 2 

The formal solution therefore becomes 

Y(x,t) = cn sin (n7rx) co9 (nrat) 

n=l 

When t = 0, this is seen to reduce to the Fourier series for f(x). 

4.6 Numerical Solution of Differential Equations 

Since relatively few differential equations can be solved (or integrated) in finite 
terms, it is generally necessary to consider numerical methods in order to obtain 
approximate solutions. Even when the solution of a differential equation can be 
obtained in infinite terms, the solution is usually difficult to evaluate and hence often 
of limited practical value. The advent of high-speed digital computers has made it 
relatively easy to obtain the numerical solution of difficult equations, such as multi- 
group reactor equations. 
equations may be found 

A large number of useful techniques for solving differential 
in the references. Some simple techniques follow. 

4.61 Ordinary DiBerential Equation. Modified Euler Method. Although this 
method as well as the following Runge-Kutta method can be used for a system of 
equations, it is easier to consider a single first-order equation in order to indicate the 
method of solution. Consider the differential equation 

Y’ = fb,Y) 

with the initial condition Y(Q) = y,. 
is easily seen to be given by 

An approximation for y(xO + As) = y(zl) = y, 

Yl = yo + y’o Ax 

where ~‘0 is shorthand notation for f(xo,yO). In like fashion 

Yn+1 = yn + y’n Ax n = 1,2, . . . 

This, the oldest, simplest, and crudest technique, was devised by Euler. 
Euler method lets 

A modified 

l/1* = yo + y’o Ax 

and Yl 
= ye + Y’o + tYl*Y Ax 

2 
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where (vi*)’ E f(zr,yi*). Although this modified Euler method is slow and of 
limited accuracy, it is very simple and easily used. 

Rung+Kutta Method. Again consider y’ = f(z,y) subject to y(zO) = y,,. This 
method consists of computing in sequence kl, kz, k3, k, and then the desired vl, where 

h = j(xa,yo) Ax 

h = f (XO + “2, yo + ;) AZ 

.h = f (XO + $, yo + 1) AZ 

ka = fbo + Ax, yo f 123) Ax 
Yl =yo+jQ(kl+2kz+2k3+k3 

In order to obtain 1~,+~ (n = 1, 2, . .), it is necessary only to replace the x0 and y. 
on the right-hand side of the above relations by the previously obtained zn and y,,. 
This technique is one of the most commonly used and is of sufficient accuracy for most 
applications. 

4.62 Partial Differential Equations. Elliptic Equations. For illustrative pur- 
poses consider the Laplace equation uzz + vyy = 0 with Dirichlet conditions on a 
square boundary; that is, v(O,y) = fl(y), v(a,yl) = fz(y), v&O) = f&r), u(x,a) = fd(z). 
Let the square of side a be divided into a network or lattice of squares of side h, where 
a is an integer multiple of h. This can be accomplished by drawing two families of 
lines parallel to the sides of the original square and spaced at integer multiples of h. 
The intersections of these families of lines are called lattice points. The numerical 
technique consists of solving a set of associated difference equations for a function that 
takes on values only at the lattice points and using it as an approximation to the 
function p at the lattice points. 

The differential equation v,, + vyy = 0 can be associated with the difference 
equation 

45 + h, Y) - 24&Y) + 4x - h, y) 
h2 

+ 4% Y + h) - MZ,Y) + dx, Y - h) = o 
h2 

or e&y) = Ma(z + h, y) + U(Z - h, y) + V(Z, y + h) + ~(2, y - h)]. This associa- 
tion results from approximating a first derivative dw/dx by [w(x + h, y) - w(x,y)]/h 
and a second derivative d%u/dxZ by [w(x + h, y) - 2w(x,y) + w(x 7 h, y)]/h*. The 
last equation for v(x,y) indicates that the value at an interior lattice point is the arith- 
metic mean of the values at the four nearest points. 
where i, j = 0, 1, 2, . . 

With the notation v(ih,jh) = vii, 
. , N, and nh = a, the clifference equation becomes 

Vii = >i(Vi+l.j + Vi-1.f + Vi.!+1 + Vi.;-1) i, j = 1, 2, . . , N - 1 

Whenever the subscripts i or j equal 0 or N, the corresponding vii is set equal to the 
appropriate boundary value; for example, voj = fl(jh). 
solving a system of linear equations. 

The problem now consists of 

There are two general methods, relaxation and iteration, that can be used to obtain 
an approximate solution to this linear system. The relaxation method deals with the 
quantities 

Rii = Vi+l.j $- Vi-1.j f fA.i+l f VC,i-1 - ‘hii 

In this method a set of zlij’f (i, j = 1, 2, . . 
puted. 

, N - 1) is chosen and the Rii are com- 
The Rii are called the residuals, and the object of the relaxation process is to 

try to alter (or relax) the vijo so that the residuals all reduce, as nearly as possible, to 
zero. Since the relaxation process is not systematic and may proceed in any fashion 
in order to reduce the residuais, it is a hand method and not a machine method. 

Iterative methods of solving linear equations are discussed in Art. 4.1 of Sec. 3-l. 
The Gauss-Seidel method is a commonly used iterative technique. Consider the 
formula 

vcn+uij = Ji[vq+l j , + Vcn+‘)i-l.f + dn)i.j+l + U(“+l)i.j-I] 

r - _ .,. .._.-_,. “_ ._ - ..i ,. ,_ 
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where the superscript n denotes the 4th iteration. Again a set vii(o) is chosen for the 
interior points. i’ew values sit(r) are obtained from the formula by starting at the 
lower left-hand corner and proceeding to the right and then upward. vii(“+r) are 
similarly obtained from the vii(“). The process is continued until the ~ij(*+l) are 
sufficiently close to the u;,@). 

More generally, when difference equations replace any elliptic equation and its 
boundary conditions, a system of linear equations results. The numerical method in 
such cases is called implicit. 

Parabolic Equations. The numerical solution of parabolic and hyperbolic equations 
can be calculated with step-by-step processes. In contrast to implicit methods, these 
step-by-step processes are called explicit methods. 

Consider the heat equation Ut = uU,, with the boundary conditions U&O) = f(x), 
U(O,t) = gl(t), U(L,t) = g*(t). Let the strip t > 0, 0 < z < L be covered with a net 
of equal rectangles with sides AZ = h and At = k, where L is an integer multiple of h. 
If Ut is replaced by [U(x, t + k) - U(x,t)l/k and U,, is replaced by [U(x + h, t) - 
2U(x,t) + U(x - h, t)]/hz the heat equation is expressed by 

u(x, t + k) = ru(x + h, t) + (1 - 2r)U(x,t) + rU(x - h, t) 

where r = ka/h*. With this formula it is possible to calculate the values of U on the 
t + k line if the values of U are known on the t line. Now the values of U on the line 
t = 0 are given by U(x,O) = f(z), and therefore it is possible to calculate the values 
U(x,k). It is, of course, not necessary to calculate the values U(O,k) and U(L,k) or, 
indeed, any U(O,t) and U(L,t), since they are specified by the boundary conditions. 
Having obtained U(x,k), the values U(x,2k) can be obtained, and so on, step by step 
to U(x,nk), where t = nk is the time interval to be covered. 

One precaution must be followed in using this explicit method. The value of T must 
satisfy 0 < r 2 35; otherwise the numerical solution obtained may have little con- 
nection with the actual solution. This fact, noted by Courant, Friedrichs, and Lewy, 
states, roughly, that if the space mesh length h is fixed, the time mesh length k cannot 
be too large. 

Hyperbolic Equations. Consider the wave equation U1t = u2Uzz with the boundary 
conditions U(x,O) = fl(x), Ul(x,O) = fdx), U(O,t) = gl(t), U(L,t) = gdt). Again 
cover the st,rip t > 0, 0 < x < L with rectangles having sides Ax = h and At = k, 
where L is an integer multiple of H. Let the quantity U(x,t) be denoted by Uij when 
x = ih and t = jk, where i = 0, 1, 2, . . . , N and j = 0, 1, 2, . . . . If the second 
derivatives are replaced by second differences, the wave equat.ion becomes 

ui.,+1 - 2Uii + Ui.j-1 = a2 -_ Ui+l,j - 2Uii + Ui-1.j 

k* h2 

or Ui.j+~ = ~Ui+~.j - 2(? - l)uii + rUi-l,i - Ui,i-l, whcrc T = kW/h*. The initial 
conditions U(x,O) = fl(x) and Ul(x,O) = fdx) or, with forward difiereIlces, 

U(x,k) - U(x,O) = k.fz(x) 

and therefore U(x,k) = kfz(x) + fl(x) supply the information needed in order to start 
the step-by-step process. 

Note that when ku = h, the equation reduces to Ui.j+~ = U<+l,i + Ui-1.j - Ui.j-I. 
It is easily verified that U = f(z - at) + g(x + at), where f(z) and g(z) are any two 
functions of z with second derivatives, is a solution of both the wave equation and this 
last difference equation. Therefore any solution of either the wave equation or the 
difference equation is a solution of the other, since U = f(x - at) + g(z + at) is a 
general solution. 

More generally it is necessary when dealing with hyperbolic equations to make sure 
that the numerical process makes sense; for example, high-frequency component of a 
wave motion will always be distorted. Here r = k2u2/h2 must be restricted by 
r 5 1 in order to ensure convergence of the numerical method. 
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6 OTHER TOPICS 

6.1 Vector Analysis 

A discussion of vectors appears in Art. 1 of Sec. 3-l. The primary objective here is 
to present some of the more common and useful formulas and results of vector analysis. 

6.11 Scalar and Vector Products. The scalar (or inner or dot) product of two 
vectors a and b is denoted by a * b or (a,b). The magnitude or length of a vector a 
is denoted by Ial. The vector (or cross) product of two vectors is denoted by a X b. 
It is customary to express a vector in a-space in terms of three unit vectors i, j, k along 
the positive z, y, and z axes. In Sec. 3-1 the unit vectors are denoted by ei, el, and 
ea. ear denotes a unit vector in the positive 01 direction. The two vectors a and b, 
therefore, can be written as a = ari + a,j + atk and b = bii + bzj + bak; the follow- 
ing elementary relations may be noted: 

/aI2 = a * a = a12 + u2* + bz2 
a. b = b * a = albl + a2bz + asbr = la//b/ cos (a,b) (59) 

a - b = 0 means a = 0 or b = 0 or a is perpendicular to b 
i*i=j-j=k-k=l i-j = j.k =k*i ~0 I::; 

a-X b = -b X a = i(ah - u3b2) + j(ugbl - bd + k(albz - blax) (62) 
iXi=jXj=kXk=O 
iXj=k jXk=i kXi=j (63) 

Triple Scalar Product. V 1 o ume of parallelepiped with edges a, b, and C: 

(abc) = a - (b X c) = (a X b) * c = b - (c X a) = 
i I 

? r: ;; (64) 
Cl c2 c3 

l’riple Vector Products: 

a X (b X c) = b(a * c) - c(a * b) (65) 
(aXb)*(cXd) =(a.c)(b*d) -(a*d)(b*c) (66) 

(a X b) X (c X d) = [a. (b X d)]c - [a * (b X c)]d = [a * (c X d)]b 
- [b * (c X d)]a (67) 

The Di$erential Operator V. Rectangular Coordinates: 

v=del=ik+jz+kk 

vv =gradv =iz+jg+k:z 

The gradient is a measure of the rate of change of the scalar field v at the point 
(x,2/,4. 

V-F=divF=~fa$+$ F = F,i + P,j + P,k (69) 

v X F = curl F = rot F = i 
aI?, -< 
- 
aY 

- 2 

V*V = v * (VV) = de1 squared = 2 + $ + $ 

Differentiation Formulas: 

V(UV) = uvv + vvu 
v * (vF) = (VU) . F + vV * F 

v x (vF) = (vu) X F + vv X F 
v - (F X G) = G . (V X F) - F * (V X G) y;i 

v(F . G) = F * vG + G . VF + F X (v X G) + G X (V X F) (GG) 
v x (F X G) = G . VF - Fe VG + F(v * G) - G(v . F) 

v * (v X F) = 0 v x (VV) = 0 i::; 
/ v x (v X F) = v(v * F) - v*F (79) 
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Cylindrical Coordinates: 

x = T cos e y = T sin 0 z =* 

ds2 = dr2 + T= de2 + d9 

grad v = e, 2 + ee : $ f el $ 

Spherical Coordinates: 

x = 7 cos cp sin B y = 7 sin p sin 0 2 = r co9 e 

de2 = dr2 + 14 sin2 0 d@ + r2 de2 

grad v = er g + e, &z+eet$ 

1 a 
div F = $ ,-$ (r*F,) + kO $ -i- - - 

T sin e ae 
(sin OFe) 

curl F = e, ke [ 5 (sin OF,) - 21 + erp $ [i (rpe) - z] 

(87) 

+td ke$ - +,I C I (88) 
T 

[SEC. 3 

(81) 

(82) 

1 (83) 

(84) 

1 aA, -- 
T ae 

(85) 

(86) 

(89) 

zntegrcd Theorems. n is a unit outward normal vector to a surface A, dA is an 
element of surface, and dV is an element of volume. 

r = si + yj + zk 
Stokes’ Theorem: 

(V XF).ndA = 
/ 

cF.dr 

The double integral is taken over the area bounded by the closed curve C. 

Divergence OT Gauss’ Theorem: 

FendA 

The triple integral is taken over the volume inside the closed surface A. 

Green’s Theorem: 

lIJ v (Vv . Aw) dV = 
, JI 

/(vw) .ndA - 
M 

v uv%u dV 

%w - WV%) dV = (VVW - WVV) - n dA 

The triple integrals are taken over the volume inside the closed surface A. 

(90) 
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6.2 Integral Transforms-Operational Mathematics 

The integral transform f(s) of a function F(t) is defined by the integral equation 

f(s) = Lb K(s,l)F(1) dt = ‘1’,(FI 

The function K(s,t), called the kernel of the transform, is taken to be a known function. 
It is apparent from the definition that 

cf(s) = 
J 

b K(s,t)cF(t) dt = Il’,(cF) 
a 

and 

fl(S) +fi(s) = La K(s,t)[F1(t) f F&)1 dt = Y,(F, + Pz) = Z’,(Pl] + T*{F2) 

These two relations indicate that the transformation between the functions F’(t) and 
f(s) is linear. The defining transformation above is, then, a linear integral transform, 
although it is customary to leave out the word linear. 

The use of integral transforms is a particularly useful technique for solving bound- 
ary-value problems. In essence, this technique can be described as follows: First, 
apply an integral transform to a differential equation and its boundary conditions. 
This, in effect, reduces the number of independent variables by one and introduces a 
parameter. The resulting, or transform, problem is then to be solved for the trans- 
form of the dependent, or wanted, variable. It is then necessary to invert this solu- 
tion, that is, undo the result of the transform, in order to obtain the solution of the 
given problem. An example of this process appears in the article concerned with 
boundary-value problems. 

Each type of integral transform is particularly appropriate to the solution of certain 
kinds of linear boundary-value problems. The Laplace transform has proved to be 
especially useful for solving transient problems of the type arising in the conduction 
of heat in solids and in vibration theory. In contrast to the Laplace transform, where 
the transformed variable is usually the time, the Fourier transforms are generally 
taken with respect to a space variable over an infinite or semi-infinite interval. The 
Hankel transform is applicable when the problem has symmetry about an axis and a 
radial variable from 0 to m is present. The Mellin transform is similar to the Fourier 
transform in its application. 

It should be noted that the transform of the product of two arbitrary or unknown 
functions cannot be obtained usefully in terms of the transforms of the individual 
functions. Consequently, the integral transform method is successful only when the 
coefficients involved in a boundary-value problem are either independent of or ele- 
mentary functions of the transform variable. 

6.21 Laplace Transform. The Laplace transform f(s) of a function F(1) is defined 

f(s) = km e-V(t) dt = L{P) (95) 

The Laplace transform of F(t) exists if F(t) is sectionally continuous in every finite 
interval in 1 > 0 and if it is of exponential order, that is, there exist constants C and 
M such that 

lim e-ctIF(t)l < M 
t--t* 

The inverse Laplace transform is denoted by L-1 { f(s) ) . This indicates that 

L v(t) t = f(s) and F(t) = L-l{ f(s) 1 

The inverse transform is not always easily obtained. The use of tables of trans- 
forms is the most convenient method of obtaining the inverse transform. The general 
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Table 6. Laplace Transforms 

F’(t) 
F(")(t) 

Jk 1:’ P(z) dz dz, 

/kF,dt - r)P*(r) d7 

= 1~1*F2. convolution 
!“F@) 

&(t) 
F(t - b) 

where 
P(t) = 0 if 1 < 0 

;p (f) 

c” .z&eu”L 

n=l 

‘&->5* -56 

1.3.5 . . (an - 1) 

:os at 

sin at 

3inh at 

:osh at 

/ 00s at 

sin at 

n sin at 

:rt) -59 co.9 2 dii 

+k) -% ain 2 4% 

J”(2 VG, 

r,(at) (Re Y > -1) 

“J,(d) (Re Y > - 35) 

f (dJ)-s$ exp (- !?) 

!rfc (; t-q 

,P exp (- ?J 

sf(s) - ZF(Oi) 
s”,/(s) - J”-‘p(o+) - .p-*y’(O+) - - z~‘(“-l)(o+) 

ina, 

,; f(8) 

fI(df?b) 

(- l)*cflf(qY) 

/: 
f(r) dz 

$t j&p’ I 

fb) 

P(Y) 

PO’ 
q(s) = (s - ad(Y - (II) (8 - ON) 

w (k + 1 > 0) 

(92 + a*)* 
208 

(82 + a?* 
2”a 7t!8” 

(82 + az).+l 
,-s&x/, 

,-J4,-k,. 

1 _ &/. 

!eCkG(k 20) 
* 

,-YJ- k4 (k 2 0) 
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inversion procedures, however, involve inversion theorems and most often inversion 
integrals or series. The references contain tables of transforms as well as more 
information concerning the following transforms. 

The inversion integral for a function f(s) is given by 

~~-1 (f(s) ) = ki ily /yL:T e%z) dz (96) 

where the integration is along a line parallel to the imaginary axis in the complex z 
plane. The following theorem, essentially the same as the one found in Churchill’s 
“ Modern Operational Mathematics in Engineering,” relates the inversion integral 
and inverse transform: 

Znversion Theorem. If f(s) is an analytic function of s and is of order O(s-k) in some 
half plane Re s 2 c, where k and c are real constants and k > 1, then the inversion 
integral Lie’ (f(s) ) along any line Re z = y, where y 2 c, converges to a function F(t) 
that is independent of y and whose Laplace transform is f(s); that is, 

. F(t) = Id-‘(f(s)) and L VW I = f(s) 

F(t) is continuous for each t 2 0, is of order O(er”) for all t 2 0, and is such that 
F(0) = 0. 

It is often possible (see references) to express the inversion integral in terms of an 
infinite series or an equivalent infinite integral. 

6.22 Fourier Transforms. The Fourier transform f(y) of a function P(z) is 
defined by 

f(y) = (2n)-56 /Tm e+P(t) dt (97) 

The function f(y) is also called the spectral function for P(z). The Fourier integral 
theorem formally states that 

F(x) = & /Tm dy /Tm F(t)e”u(l-+ dt 

This leads to Fourier’s inversion formula 

IT(~) = (2rr)p /:- f(y)e-“g” dy 

For real F(z) the right-hand side of the Fourier integral thcorcm has the form 

1” - 
; o dy / / 

_ _ F(t) co9 27ry(l - 2) dt 

(98) 

(100) 

If f(z) is sectionally continuous in every finite interval, and if 
/ 

Tm If(x) I dx con- 

verges, then at every point where f(z) has right- and left-hand derivatives 

; [Fb+) + PCs-)I = i /urn dy I--- F(t) cos 2ry(t - x) dt 

If f(z) is an odd function, the Fourier sine transform 

. 

f(y) = (3)“” /om P(t) sin yt dt 

with the inversion formula 

F(x) = (~)“~m f(y) sin 21, dy 

(102) 

(103) 
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Table 7. Fourier Transforms 

[SEC. 3 

F(m) 

izF(z) 

d F(z) 
d?. 

&OF(Z) 

F(z + 20) 

;2.)-s4/ym F(I)G(Z - t) dL 

(2*)--44 I.%-W 

sin az 
z 

sin a29 

cm a22 
+z p<z<q 

0 z < P. z > q where P < q 
e--rr+iurr +>o 

0 z<o 
I 

i? 

W’ O<Res<l 

e-rz* Res>O 

1 

22 + a2 
r - z*)-b4 [JI ; !I z 
(22 + 02) -54 

I 

- iYf(Y) 

f(Y + a) 
e-we/(y) 

6(Y) 

f(YMY) 

lYl-4e 

(;)!“luI <a 

I- 1111 > a 

:2a) -% sin c:+s> 

:2&* cos (g - i) 

:(2*)-45 
eiP~~+v~ - ,p2huiui 

Y 

‘(271) -% + y + ic) -1 

ii 
;j’41y[1-1.(l - s)sinzs 

Bs)-%uwr 

L(d + II')% + aI+ + Y+ 
(5) $4 e-.IYI 

(;)” JoCay) 

Cl >* Ko(a Ivl) 

is obtained. If f(x) is an even function, the Pourier cosine transform 

f(y) = (f)‘” ,(,” F(t) cos yt dt 

with the inversion formula 

(104) 

F(x) = (;)‘“/o* f(y) cos zy dy (105) 

is obtained. 
6.23 Hank4 Transforms. 

is defined by 
The Hankel tmnsfm-m f(y) of order y of a function P(z) 

f(y) = /o- xJv(x~Y’(z) dx (106) 

The inversion formula is given by 

F(z) = 
/ 

o- yJvby)f(y) dy (107) 
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6.24 Mellin Transform. The Mel&n lransform f(y) of a function F(x) is defined by 

f(y) = (,” xl/-V’(x) dx (108) 

The inversion 

F(x) = k j,_:; f(y)x-“dy (109) 
T 

6.26 Finite Fourier Transforms. The finite sine transform f.(n) and fin& cosine 
transform fC(n) of a function F(x) are defined, respectively, by 

and 

f*(n) = cF(x) sin nx dx n = 1, 2, . . 

f&z) = [P(x) cos nx dx n = 0, I, 2, . 

. 
The inversion formulas for these transformations are given, respectively, by 

F(z) = f 2 f*(n) sin 72x 0 <x <T 
?L=l 

and * F(x) Y i fc(0) + z 1 fc(n) cos nx 0 <x <K 
n=l 

6.3 Linear Integral Equations 

The following four types of linear integral equations are commonly noted: 
Volterra equation of the first kind: 

/ 
z K(x,s)y(s) ds = f(x) 

a 

Volterra equation of the second kind: 

Y(X) - 
/ 

’ K(w-)Y~) ds = f(x) a 

Fredholm equation of the first kind: 

J 
b K(x,s)y(s) ds = f(x) a 

Fredholm equation of the second kind: 

Y(X) - 
I 

’ K(x,s)y(s) ds = f(x) 
a 

(110) 

(111) 

(112) 

(113) 

(114) 

(115) 

(116) 

(117) 

The problem for these linear integral equations is to determine the unknown function 
y(x) that satisfies the equation in the desired interval. It is assumed that the func- 
tions K(x,s), f(x) and the limits a and b are known. K(x,s) is called the kernel of the 
equation. These equations are called integral equations, since the unknown function 

. appears in the integrand. Similarly the equations are called linear, since the unknown 
function y/(x) occurs linearly. 

Although some theory is related to nonlinear integral equations, most of the existing 
theory deals with 1:---- --..-I:--- 

!lji Ii/] 
1;/ 11 
;,I/ /j /I 

!.;r ii;ii; 

j;:! !iij 

;I ‘I!1 

I;// 
/1 

111 ij /i 

1 ii/ i//’ 

ii I/ I’! 

/ 
il ijl 

i II 
;I /I 
!, 1: 

I ” 1:; 1: I,‘: 
I;/! 

iI 
I ,! I 

‘I ,/’ 
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y(z) + Ib K(v) sin [y(s)1 ds = f(x) 
a 

is an example of a nonlinear equation, since the unknown function appears nonlinearly 
through a sine function. Some theory has also been developed for systems of linear 
integral equations and linear integral equations in more than one independent variable. 
This article, however, deals only with linear integral equations in one independent 
variable. 

An integral equation is called singular if either one or both of the limits of integration 
become infinite or if the kernel becomes infinite at one or more points of its domain. 

J 

m 

0 
e-*“y(s) ds = f(s) 

and ___ Y(S) ds = f(x) 

are examples of singular equations. 
There are two common methods of relating linear differential equations and Voltem 

integral equations. Consider the linear differential equation 

n 

Y(7’) (5) + 
c 

A;(x)y’“-” = p(z) 

i=l 
If one lets z(z) = y(*)(s), then 

p-“(s) = 
/ 

oz z(s) ds + a,,-1 yb-V(x) = 
I 

oz (x - s)z(s) ds + an-lx + aa-2 I 

and finally 

Y(X) = ‘;7,-es~~’ z(s) ds + arrel fil + . + a0 

Direct substitution in the differential equation leads then to the integral equation 

;, + (5 - s)Az + + ‘; --‘;;’ An1 4s) ds = f(s) 
n 2 

The other method consists of repeated int,egration of the differential equation. It is 
not difficult to verify using the formula 

Jo” j;’ . . Jo”” f(xn+l) dx,+l dx, = io” VfO ds 

that the differential equation will then become 

Y/(X) + K(x,s)y(s) ds = f(z) 

n-1 

where K(x,s) = 
c 

h((s)(x - s)i, the k<(s) being functions of Ai( 

i=O 
Most developments of linear integral equations deal with Fredholm equations, since 

a Volterra equation can be considered as a special case of a Fredholm equation with a 
kernel K(x,s) which is defined for a < s 5 x < b and is zero for a 5. x _< s 5 b. 

Often either a parameter x appears naturally or it is convenient to introduce such a 
parameter in the discussion of a integral equation. The equation 

Y(4 - x s b K(X,S)Y(S) ds = f(x) 
a 

exhibits the customary location of a parameter. 
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There arc three general methods leading to the solution of Frcdholm equations of the 
second kind with a parameter. The first method is called the method of successive 
substitution. In this method the unknown function is obtained as a power series iu 
x with the coefficients being functions of the independent variable 2. This series is 
usually called a Neumann series and converges for certain values of h. Method two 
is due to Fredholm and will be called the Fredholm method. The unknown function in 
this technique is obtained first as the ratio of two power series in X. The power series 
in the numerator has coefficients that are functions of 2, while the denominator power 
series has coefficients that are independent of z. This method considers the integral 
equation as the limit of a set of n linear algebraic equations in n unknowns when n 
tends to infinity. The Hilbert-Schmidt theory provides the third method for obtaining 
a solution. In this theory the unknown function is obtained in the form of a series of 
fundamental or characteristic functions. These characteristic funct.ions, or eigen- 
functions, are solutions of the homogeneous integral equation and are associated with 
particular values of the parameters called characteristic numbers or eigenvalucs. 

Before indicating some of the resu1t.s obtained by these three methods, it is worth- 
while to consider the special case where the kernel has the form 

n 
K(x,s) = c Si(z)Bi(s) 

i=l 

where Ai and &(y) are continuous and linearly independent. For a Fredholm 
n 

equation of the’ first kind it is necessary that f(z) = 
c 

CiAi(z) in order that the 
i-1 

equation have a solution. The general solution of this equation can then be written 
in the form 

n 

Y(X) = 
c 

aiBi(x) + h(z) 
i=l 

where h(z) is any function orthogonal to all the &(z); that is, 
/ 

b h(s)&(s) ds = 0. 

For Fredholm equations of the second kind with the above typi of kernel a solution 
of the form 

.” 

Y(X) = f(z) + 
c 

ciAi(x) 

i=l 

is assumed. A necessary and sufficient condition that there exist a unique solution 
and set of ci is that a certain determinant A is not equal to zero. This determinant A 

is defined by 

A = det [ 6ij - k” Bi(s)Ai(s) ds] 

where 6~9 is the Kronecker delta and i, j = 1, 2, . . . , n. This solution can be 
written as 

Y = f(x) + 
I 

b L(x,s)f(s) ds 

0 &z) . A,(x) 
Bl(s) 

where 

A 

L(x,s) = i(s) 

A 
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If A = 0, solutions may also exist. This situation parallels the linear algebraic case 
and corresponding results hold. 

6.31 Successive Substitution. The method of successive substitution describes 
in its name the process used to obtain a solution. Successive substitution for y(z) 
gives 

Y(Z) = f(x) + x /-b K(x,s)Y(s) ds = f(x) a 

+ X [ R(v) [f(s) + x [ K(s,sMsd dsl 

= . . = f(z) + h /~f+~zjK/Kf+... 

+An[ wJ:+P+l[ /*Jy 

n n+1 

where the integration is indicated symbolically. If, then, 

lim A+’ JK . JK y - lim (AJK)“y = 0 
n--m - n-+- 

n 

then formally 

Y(Z) =f(x) + 2 (A / K)*f 
n=l 

Theorem 1 gives the essential result for this method. 
Theorem 1. If the kernel K(z,s) is real and continuous in its domain (a 5 z < b, 

a < s < b), if jK(z,s)j 5 M in this domain, if f(z) is continuous, and if the parameter 
satisfies 1x1 < l/[&f@ - a)], then the equation 

Y(X) - x I 
’ K(z,s)y(s) ds = f(z) 

a 

has a unique continuous solution that is given by 

Y(X) =fb) + 2 (A / K)‘f (120) 
n=l 

The series involved in this solution converges absolutes and uniformly. 
In the case of the Volterra equation 

Y(Z) - x 
/ 

= K(w)Y(s) ds = f(z) 
a 

the theorem holds without the restriction on the size of IX]. 
6.32 Fredholm Method. The Fredholm method evolved from considering a 

system of linear equation that replaces the integral equation. Divide the range of 
integration into n equal parts of length h, and consider the unknown function and the 
kernel at n corresponding values of the independent variable. The system of n 
equations in the n unknowns y(Zi) 

n 

Y(Si) - h 
c 

hK(zi,si)y(si) = f(zi) i = 1,2, . . . , n 

j=l 



corresponds to the integral equation 

b Y(Z) - x 
I 

K(v)Y(s) de = f(x) a 

The solution of these linear equations, providing A # 0, is given by 

where A = det (6;; - xhK;i), ZC;ii = K(zi,si), and Aij is the first minor of the clement 
in the ith row and jth column. The determinant A can be expanded in the form 

. 
/ K11 . K n n 

A=l-Ah c 
X2h2 

Kii + 2! 
Cl 

Kii Kii + . , . + 9 : 
Kii Kij 

i=l i,j= 1 
K?%1 

The limit as n tends to infinity leads formally to 

lim A z o(X) = 1 •k 
n-+m 

2 oj / / I< (;: z!) dxl 
‘1 - 

j=l ‘. 
2 

j 

K(X1,Sl) Z~(Xi,Sl) 

where 

in a corresponding fashion 
Kbd K(wi) 

2 (-X)k / ’ ,- K (XXI . %) dxl 
- 

k! - SXI 
k=O k 

The solution given above for Y(G) can be rewritten in the form 

n’ 

y(xJ = f, % + 
c 

fi % 

i=l 

K, 

dq 

. dz 

where the prime indicates that i # j. By starting with this solution, by taking 
limit as n tends to infinity, and by noting that 2i can be any point of a 5 z 5 b, it is 
possible to obtain the formal result 

Y(X) = f(x) + Iab Ux,s,W(s) ds 

where 
D(x,s,M L(x,s,X) = - 

DO4 

The two primary results of the Fredholm theory can be expressed in Theorems 2 
and 3. 

Theorem 2. If the kernel K(x,s) is continuous in its domain, if f(x) is continuous, 
and if D(X) # 0, then the equation 

; Y(X) - x 
I 

b K(x,s)y(s) ds I f(x) 
a 
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has the unique continuous solution 

[SEC. 3 

Y(X) = f(x) + 
/ 

’ L(x,s;x)f(s) ds (121) 
a 

where, as obtained formally before, 

D(w,N 
L(x,s,X) = __ 

DC4 

The power series D(X) converges absolutely for all X, and the power series D(x,s,X) 
converges uniformly with respect to x and s in its domain and converges absolutely 
for all X. 

Theorem 3. There exists at most a denumerable number of values of h, called char- 
acteristic values or eigenvalues, for which D(X) = 0. In general no solution will exist 
for the nonhomogeneous integral equation, that is, f(x) # 0, for X0 such that D(b) = 0. 
On the other hand the homogeneous integral equation, that is, f(x) = 0, has no non- 
trivial solution except for those XO where D(Xo) = 0. These theorems and other 
existing results or theorems are analogous to theorems for systems of linear algebraic 
equation. 

6.33 Hilbert-Schmidt Theory. The Hilbert-Schmidt theory is developed with 
the same conditions on the kernel K(x,s) and the function f(x) that are used for the 
Fredholm theory. In addition it is assumed the kernel is symmetric. A symmetric 
kernel satisfies the condition 

K(x,s) = K(s,x) 

Before some of the results of Hilbert-Schmidt theory are indicated, the types of com- 
mon kernel may be noted. A Hermitian kernel satisfies the condition 

ZC(x,s) = -K(s,x) 

where the bar indicates the complex conjugate. A skew-Hermitian kernel satisfies 

K(x,s) = -K&x) 

A polar kernel has the form 
pbZ(v) 

where K(x,s) is a symmetric kernel. Any equation that has a polar kernel may be 
transformed into an equation with a symmetric kernel. A kernel K(x,s) is called 
positive de$nite if 

h h 

Il 
f(t)K(t,s)j(s) ds dt > 0 

a a 

for any continuous bounded f(s). If the inequality is reversed, the kernel is called 
negative desnite. If the equality is also permitted, the kernel is called semidefinite. 

The following concepts appear in the results of Hilbert-Schmidt theory. A function 
z(x) is normalized if 

/ 

h _ 
z(x)z(x) dx = 

a I 

6 
z(x)*dx = 1 

a 

As usual the bar indicates the complex conjugate. Two functions zl(s) and Z*(X) are 
said to be orthogonal if 

/ 

h __ 
z~(x)z&c) dx = 0 

a 

A set of functions (G(X) ] is said to bc orthonormal if 

/ 

h - 
zi(x)zh(x) dx = Q 

a 
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where ajk is the Kronocker delta. A set of functions z<(x) dofined on the interval 
o 5 x 5 b is called complete if the only function of the type being considered that is 
orthogonal to every Z%(X) is the zero function. A value X0 such that the homogeneous 
equation 

y(x) = X” 
I 

b K(x,s)y(s) ds 
a 

has a nontrivial solution is called a characteristic value or eigenvaluc. A correspond- 
ing function is called a characteristic function or cigenfunction. 

Some of the more important results of Hilbert-Schmidt can bc summariecd as 
follows. Given a real, symmetric, continuous, nonzero kernel, the following properties 
hold : 

1. There exists at least one eigenvalue X0. 
2. All the eigenvalues are real, and the cigenfunction can be assumed real. 
3. There exists a complete orthonormal set of eigenfunctions (y;(z) 1. 
4. A continuous function f(x) can be expressed in the form 

. 
f(x) = 1 CiYi(X) 

i 

where c< = 
/ 

ba f(s)yi(s) ds 

The series if infinite is uniformly convergent on (I < x < b. 

6.4 Calculus of Variation 

The methods of calculus of variation are generally separated into direct and indirect 
methods. In the direct method a suitable approximate variational problem is formu- 
lated in which a finite set of n constants or parameters is to be determined. It then 
may be possible to let n tend to infinity in the solution of t.he approximate problem 
and thus lead to the solution of the original problem. In the indirect method a 
related differential equation, often called the Euler equation, is usually obtained. 
Some solution of the differential equation can then be shown to solve the variational 
problem. Only some elementary results of the indirect method follow. 

6.41 Euler Equations, The simplest general problem of the calculus of variation 
consists of obtaining a function y = y(x) that gives a minimum (or maximum) value 
to the integral 

Z = L'f (x&f) dx = ~,f(x,&) dx 

where t,he values xi, ~2, y(x,), and Y(Q) are given. The given function j is taken to be 
twice continuously differentiable with respect to its arguments. Furthermore, the 
sought function Y(Z) is assumed to be twice differentiable. 

Let y(x) denote the minimizing function for the integral I, and let v(x) be a function 
defined for x1 < x 5 ~2 that possesses a continuous second derivative and is such that 
I = 0 = 7(x,) but is otherwise arbitrary. Consider then the set of comparison 
functions Y(Z) defined by 

Y(x) = y(x) + e?(x) = y(x) + MS) 

where tis a parameter. Since q(x) vanishes at the end points xi and x2, Y(zi) = y(xi) 
and Y(z,) = ~(5~). The set of functions Y(x) have two important properties. First, 
by proper choice of e and ~(2) it is possible to represent any suitably differentiable 
function satisfying the end conditions. Second, no matter what q(x) is chosen, y(x) 
is a member of the set for e = 0. The quantity 6y = e?(x) is called the varialion of 
the function y(x). 

Consider next the integral 

Z(a) = 
I 

,:’ f(x, Y, Y’) dx 
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Since letting e = 0 is seen to be equivalent to replacing Y and dY/dX and y and 
dy/dx, the integral Z(e) is a minimum with respect to e when e = 0. It follows that 
a necessary condition for a minimum is given by 

= Z’(0) = 0 
.=o 

Now 

.l,(e) = E’ (g g + -$f$) dx = L’ (-j$ B + $, 7’1 dx 

and therefore 

I’(O) = K’ (-$, + $7’) dx = 0 

The integration by parts of this last integral gives 

which is valid for any of the chosen q(z). 
The basic or fundamental lemma of the calculus of variation states the following: 

If the equation 

with H(z) a continuous function, is valid for all functions ~(2) that vanish at the end 
point and are twice continuously differentiable, then H(z) = 0 identically in z1 5 
z < 22. Proof of this lemma may be found in the references. 

The use of this lemma with the above equation Z’(0) = 0 leads to the Euler (or 
Euler-Lagrange) difleerential equation 

af d af 
G- ( > zay’ 

cfy -$fwl =o 

or in detail, Y’%V + Y’fdY + fv’z - fll = 0 

This is seen to be a second-order differential equation for the unknown function y(z). 
The two constants of integration can be evaluated from the end-point conditions. 

The condition Z’(0) = 0, which leads to the Euler equation, is not a sufficient condi- 
tion for a minimum of Z(E). This condition Z’(0) = 0 indeed may imply a minimum, 
a maximum, or a stationary value (or inflection point) for Z(e). 

The term eztremum to the value of Z(e) is applied to all three cases. The Euler 
differential equation is a necessary condition for the existence of an extremum. 
Every solution of the Euler equation is called an eztremal (or extremizing function). 
The sufficient conditions for the minimum (or maximum) of Z(e) are quite involved 
and may be found in the references. Often the physical situation indicates the type 
of extremum obtained. 

The expression 

sr = 61’(o) = r [fu - $f/] 6~ dx +fu! 6~1:: 

even if q = 6y does not vanish at the end points, is called the variation (OT first 
variation) of the integral I. 

The problem discussed above may be generalized in a number of ways. Consider 
first the integral 

I= 
/ 

t2f(tl,x1, . . . ,x&l, . . . ,Ln) dt 
t1 
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where the superior dot denotes differentiation with mane& to t,he indenendcnt variable 
t. Proceeding in a fashion similar to the above problem, the Euler equations become 

For the integral 

I= 
/ 

z~fLw,O/“, . . . , ~‘“‘1 d2: 

the Euler equation becomes 

Finally consider the double integral 
. 

I= 

where D is the region of integration and v takes on prescribed values on the boundary 
of D. The Euler differential equation becomes 

&f% +;fv, -f” = 0 

or in detail 

f . . ..vzz + 2fV,QW + fV,“,%V + fwv, + fu,u% + fez + f?J,, - fv = 0 

5.42 Lagrange’s and Hamilton’s Equations. In classical dynamics, when a system 
is conservative, a variational principle, called Hamilton’s principle, can be used to 
determine the equations of motion. For a system with n degrees of freedom it is 
possible to choose n independent quantities q1, . . . , q* that specify the configuration 
of the system. The corresponding velocities are given by 41, . . . , Q,, where dq/dt = Q. 
The kinetic energy 2’ is given by a quadratic function in the 4s; that is, 

where the a<is may be functions of the qs. For conservative systems the external 
force is given by the gradient of a scalar potential function or energy V. The kinetic 
potential 07 Lagrange function L is defined by L = T - V, the difference between the 
kinetic and potential energy. Hamilton’s principle states that 

6 (124) 

The Euler equations that result from this principle are 

i=l,2,. . .,n (125) 

These equations are customarily called Lagrange’s equations of motion. 
For a conservative system, the total energy E, which is equal to the sum of the kinetic 

and potential energy, is a constant throughout the motion of the system. When the 
total energy is expressed in terms of the coordinates q and the momenta p, it is called 
t$ie Hamiltonian junction H. The momentum pi for the ith coordinate is given by 
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aT ‘I _ 

pi=aLi= c 
aiiqj 

j=l 

The variational principle now gives 

6 
I 

” 1, dl = 6 ” (7 - V) dt = 6 ” (27’ - H) 
ti I ti I 11 

Without giving the details, the resulting Euler equations, called Hamilton’s canonical 
equations, become 

‘(& = H and ’ 
aH 

api pi= -z 
i=l,2,. . . ,n 

Auxiliwy Conditions. In many problems a function is sought that renders one 
integral an extremum and that causes one or more other integrals to take on pre- 
scribed values. Variational problems that involve such auxiliary integral conditions 
are often called isoperimetric problems. Consider, for example, minimizing the integral 

z= 
I 

Z~zfCw,y~) dx 

subject to the integral 

I‘ = 
I 

=’ dx,y,v’) dx 
ZL 

having a given prescribed value If a function j* is defined by’ 

f* = f + xy 

where the constant x is called an undetermined or Lagrange multiplier, the Euler 
equation becomes 

The three constants, the two integration constants, and x can bc evaluated from the 
end conditions and by giving K its prescribed value. 
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