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Table 4. A Short Table of Integrals. (Continued)
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1.4 Numerical Differentiation and Integration

Given a set of numerical values of a function, the processes of numerical differenti-
ation and integration consist, respectively, of calculating the derivative (or deriva-
tives) by means of these values and of computing the values of a definite integral from
the set of values of the integrand. In both numerical differentiation and integration
the problem is solved by representing the function by an interpolation formula and
then differentiating or integrating as desired. Interpolation formulas are discussed
in Art. 3.5 of Sec. 3-1.

1t was noted in Art. 3.5 of Sec. 3-1 that a polynomial which agrees with f(z) at
Zao, T1, T_i, Tz, Tz, - . . 18 the central-difference formula

Pm=mo+wmm+§wmﬂlﬁgﬁuwm
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where z = zo + uh. Since u = 0 at zq, the derivative at zo is given by

Ay_i +Ayo 1 Ady_o + Aly_y + .- )
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Higher derivatives can be obtained in like fashion by further differentiating P(z).
Near the beginning of a set of tabular values Newton’s forward-difference formula
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is more convenient and near the end of the set Newton’s backward-difference formula
is more convenient than the central-difference formula.

There are a large number of quadrature formulas for the approximate integration
of a function specified by a set of numerical values. As previously noted, any of the
interpolation formulas can lead to quadrature formulas. The trapezoidal rule and
Simpson’s rule are the most commonly used. If 4 is the length of each subinterval,
the trapezoidal rule is

zo+nh h
/; ydx=§(yo+2y1+2y2+"'+2.7/n_1+yn)

0

" and Simpson’s rule is

Zq;f-’n}l h
fx yds = L o+ dys + 20 + 4y + 20 0 2+ A+ )

0

where n in this last case must be an even number; i.e., the number of subintervals is
even.

. Gauss’s formula (see references) is the most accurate of the formulas ordinarily
used and can be used advantageously with high-speed machines.

2 FUNCTION THEORY
2.1 Real Variables *

The subject matter of real variables may. include the following topics: the system
of real numbers, sequences, infinite series, ordinal and cardinal numbers, set theory,
functions and limits, continuity and discontinuity, differentiation and integration, and
measure theory. Infinite series and differentiation and integration are of such scope
that they are discussed in other articles. Ordinal and cardinal numbers and measure
theory are not felt to be essential here.

2.11 The System of Real Numbers and Sequences. The foundation of the
theory of functions of a real variable depends upon the real-number system. Although
the refined concept of the real number is the starting point for any discussion of the
fundamental parts of higher analysis, only the more important concepts and results
will be indicated.

The concept of the natural numbers or positive integers—1, 2,3, . . . —may be taken

as a starting point. The class of rational numbers is obtained from the positive integers
by allowing the inverse operations of addition and multiplication, namely, subtraction
and division. The totality of positive integers, negative integers, zero, and fractions
constitute the class of rattonal numbers.
It is generally appreciated that certain numbers such as \/5 and = are not rational
numbers and cannot therefore be represented by the ratio of two integers. Irrational
numbers are generally derived from the rational numbers by either Cantor’s theory or
Dedekind’s theory.

Cantor’s theory of irrational numbers depends upon the concept of a sequence of
rational numbers. If by some suitable process a first, a second, a third, . . . rational
number can be formed successively, and if to every positive integer n one and only one
rational number a, corresponds, then the numbers

B

a, Gz . . . 505, . ..

in this order, corresponding to the natural order of the positive integer, are said to form
a sequente of rational numbers. The individual numbers that form the sequence are
called the elements of the sequence. The sequence

a, G2y, . . . 5, 0ny o . .

will be denoted symbolically by {a.}.
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A sequence of rational numbers {a,} is called convergent or regular if for an arbi-
trary € > 0 there exists a number N such that for everyn > N

lan — Gnim| < € where m =1, 2, 3,

The essential feature of Cantor’s theory of irrational numbers is the assumption that
corresponding to every convergent sequence of rational numbers there exists 2 uniquely
determined object called a real number. Any real number can, therefore, be regarded
as being represented by a convergent sequence of rational numbers. Two real num-
bers A and B defined by the convergent sequences of rational numbers {a.} and {b,}
are said to be the same number or are equal if there exists an integer N such that for
all values of n > N

[@osm — buym| < e m =123,

where ¢ is an arbitrarily small positive number.

The real-number system consists of rational numbers, since any rational number a
can be represented by a convergent sequence {a,}, where a, = g for all n, and the real
numbers that are not rational, i.e., the irrational numbers.

In the Dedekind theory of the real-number system the real numbers correspond to
partitions of the rational numbers. A partition is formulated in the following manpner.
Divide all the rational numbers into two classes B and 8. In class B every number
is less than any number in S, and in class S every number is greater than any number
in R. For an irrational number there is no largest number in B and no smallest
number in 8. For a rational number there is either a largest number in R or a smallest
numberin 8. It is possible to show that Cantor’s method of convergent sequences and
Dedekind’s method of partitions are equivalent in that starting with the rational
numbers the same system of real numbers can be developed.

" If there exist a sequence {a.} and a real number A such that the sequence {a, — Al
forms a null sequence, then the sequence { {a.} is sald to converge fo the limit A and is
denoted by

lim a, = A
n—®

This definition says that for every ¢ > 0 there exists an N such that for all n > N,
lan — A| < e. Every sequence that does not converge in the above sense is called
divergeni. The Cauchy or general principle of convergence states that the necessary and
sufficient condition for the convergence of the sequence {a,} is that for every ¢ > 0,
there exists an N such that for n > N, lanim — 0a] < ¢, where m =1, 2, 3,

The system of real numbers can be consxdered sufficient for the needs of the theory
of functions of real variables, since the real numbers form a closed system with respect
to arithmetic operations, such as addition, subtraction, multiplication, division,
extraction of roots of positive numbers, and powers, and the limiting process. A
number system is called closed with respect to an operation or process if this process
results in & number contained-in the system.

It is possible to set up a one-to-one correspondence between the points of a straight
line and the real-number system. Because of this possibility, the properties and
definitions of the real-number system have a geometrical interpretation.

2.12 Set Theory. The starting point for most mathematical developments is
certain objects such as numbers or letters. A set (or class or aggregate or collection)
is defined by any property that any particular one of these objects does or does not
have. The objects that have the property are called elements of the set. This is
symbolized by

seS

where s is an element and S is the set. An empty set does not contain any elements;
i.e., there are no objects having the property of the set.

Two sets S; and S: are called equal, and in symbols S, = 8, if every element of S,
is an element of S, and conversely if every element of S, is an element of S,. If all
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the elements of a set S; are simultaneously elements of a set S,, then S, is called a
subset of S:, and this relationship is denoted by 8; (C S:. The notation S:' D) 8,
indicates the same relationship, and S, is said to include S;. If Sy C S;and 8. C 8,
then S) = Sz. If S) C S2 and Sg C Sa, t,hen S) C Ss. If S) C Sz b\lt S1 iS not
equal to Sz, symbolized Sy 5 8., then S, is called a proper subset of S..

The intersection (or logical product or meet) of two sets S; and S, is denoted by
S, M 8, and is the set consisting of all elements common to the sets S, and S,. The
union (or logical sum) of twa sets S; and S, is denoted by 8, \U 8. and is the set con-
sisting of all elements that belong to at least one of the sets S;and S;.  The definitions
of intersection and union hold for an arbitrary number of sets. If the intersection of
two sets S, and S is the empty set, then the two sets are called disjoint or mutually
exclusive. If 8, is a subset of a set S, then the complementary set of S; with respect to
S is the set of elements of S obtained by omitting the elements of S that are elements of
Si.  Generally the term complement of a set is used with respect to a fundamental, -
and therefore understood, set, such as the set of real numbers.

Sets may first of all be classified into finite and infinite according to whether they
contain & finite or infinite number of elements. An infinite set is called enumerable
(or denumerable or countable) if, and only if, a one-to-one correspondence can be set

“up between the elements of the set and the positive integers. Here the term countable
will be used to indicate either a finite or an enumerable set. A noncountable or
nonenumerable set is a set that is neither finite nor enumerable. The following results
dealing with countable and nonenumerable sets are well known:

1. Any subset of a countable set is also countable.

2. The sum of a countable set of countable sets is also countable.

3. The set of rational numbers is enumerable.

4. The set of irrational numbers and the set of real numbers are nonenumerable.

5. The set of all algebraic numbers is enumerable. An algebraic number is the root
of the polynomial equation

.

a.-:c‘ = 0

IQIM:-*

1

where a. # 0 and all the a.’s are integers.

6. The set of transcendental numbers is nonenumerable. The real numbers that
are not algebraic are called transcendental.

In the discussion of the real-number system the set of points on a line was noted to
correspond to the set of real numbers. This set of points is called a linear point set or,
briefly, a linear sef. A linear set is bounded if all its points lie in a finite interval.
An open tnterval, symbolized by (a,b), consists of all points z such thata <z <b. A
closed tnierval, symbolized by [a,b], consists of all points x such that a < z < b.

A point a is called a limit point (or limiting point or accumulation point) of a set S
if there exists a point of the set S, different from a, in every neighborhood of the point
a. For a linear set a neighborhood of a point ¢ means the open interval (@ — ¢, a + ¢),
where e > 0. It can be shown from the definition that every neighborhood of a limit
point contains infinitely many elements of the set. If every point of an interval is a
limit point of a set S, then the set S is said to be everywhere dense. The set of all limit
points of a set S is called the derived set (or derivative) of the set S and is denoted by
§’.  The closure of S, denoted by S, consists of all the points of S and the limit points
of §, that is, § = S\U 8. Any point of a set which is not a limit point is called an
isolated point.

A point a is called an interior point (or inner point) of a set S if there exists a neigh-
borhood of @ containing only points of 8. A point a is called an ezterior point of a set
S if there exists a neighborhood of a containing no points of 8. If a point is neither
an interior nor an exterior point of a set S, then it is called a boundary point of the set.
If a set contains all its boundary points and therefore its limit points, it is called closed.
'If every point of a set is an interior point, the set is called an open set. A perfect set
1s a closed get where every point of the set is a limit point of the set. Finally, a

<
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continuum is a set that is perfect and everywhere dense. It may be noted that the
complement of an open set is a closed set and conversely.

For a linear set S a point a is called an upper bound if s < a for every point s of the
set 8. 'The point a is a lower bound if s > a for every point s of the set. The point a
is called the least upper bound for the set S if it is an upper bound and if for any ¢ > 0
there exists a point of S greater than a — e. The greatest lower bound a for a set is
similarly a lower bound such that there is a point of the set less than a -+ ¢, where
e > 0.

Two of the important theorems of set theory follow.

Heine-Borel Theorem. Let the closed set of points S be covered by a set of intervals;
then there exists a finite number of intervals that likewise cover S. A set S is said to
be covered by a set of intervals I if every point of the set S is interior to at least one
of the intervals of the set I.

" Weterstrass-Bolzano Theorem. If S is an infinite bounded set there exists at least
one limit point. :

2.13 TFunctions and Their Limits. If in the course of a discussion a symbol may
be assigned various numerical values, the symbol is called a variable. A constant
assumes but one numerical value during a discussion. A real variable has values in the
set of real numbers. Given two variables z and y, y is called a function of z if to
every value of z in the domain of z there is determined a definite value or values of y.
This functional relationship is denoted symbolically by y = f(z). =z is called the
independent variable and y is called the dependent variable. The vital aspect of the
definition of a function is that for every value the independent variable takes on, the
corresponding value or values of the dependent variable are uniquely determined.
The set of values that the independent variable assumes is prescribed and is called
the domain. The set of values taken on by the dependent variable is called the range.
A function is called single-valued if the dependent variable takes on but one value for
each value of the independent variable. If for any value of the independent variable
the dependent variable takes on more than one value, the function is called multivalued
(or multiple-valued).

A polynomial function has the form

n
2 a;zn
i=0

L

apz® +azv ™t + - v - T + an

where the a; are constants and n is a positive integer. A rational function is the ratio
of two polynomial functions. An algebraic function is defined by means of the
equation

n

fi(@)any =
i=0

where the f;(z) are rational functions of . T'ranscendental functions are functions that
are not algebraie.

The theory of functions of a real variable deals with correspondences between two
sets of real numbers, designated the independent and dependent variables. The
terminology of set theory therefore applies to the set y. The function f(z) is said to be
bounded, have a least upper bound, etc., if the set y does. If the least upper bound
of a function is a point taken on by the function, then it is called the mazimum (or
maximum value) of the function. The minimum is associated similarly with the
greatest lower bound.

The quantity f(z) is said to have a limit b as z tends to z, if for any ¢ > 0 there
exists a & > 0 such that |f(z) — b| < e for all z for which 0 < |z — 2| £ 5. Sym-
bolically this relation is written

lim f(z) =b

T—To
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From the definition of the limit of a function, it follows that if the limit exists, the
value approached by f(x) as z approaches z, does not depend upon the value of f(x)
at zo and also is independent of the particular set of values that z takes on in approach-
ing zo. If the independent variable z is allowed to take on only values larger than
z, or less than zo, then the respective limits are called right-hand and left-hand limits.
These are symbolized, respectively, by

lim f(z) = f(ze*) or lim f(z)
‘z—rzot T>xo

and lim flz) = flze) or lim f(z)
T2 z<z0

The Cauchy or general principle of convergence states that a necessary and suffi-
cient condition for the existence of a limit to f(z) as z tends to zo is that for ¢ > 0
there exists a & > 0 such that [f(z”) — f(2")] < e for all values of z’, 2’ for which
0<|zg’ —a| <|z’ —a|l <.

A function may depend upon the values taken on by two or more independent
variables. Again the vital aspect of the functional relationship is that whenever each
of the independent variables assumes a value, a corresponding value or set of values
of the dependent variable is uniquely determined. Given a function of two or more
variables, there exist two types of limits: iterated limits and simultaneous limits.
Let f(x,y) be the function of two independent variables z and y, and let (z,,50) be the
limit point; then

lim [ lim f(a:,y)] and lim [ lim f(x,y)]
20 Ly—yo y—yo Laz—zo
are called iterated (or repeated) limits. An sterated limit indicates that first an
ordinary limit is taken for one variable holding the other variable (or variables) fixed
and then a limit is taken for the other variable (or other variable with the remaining
fixed). The simultaneous limit
. lim f(z,y)
Famd 7]
Y Yo
has the value 4 if for ¢ > 0 there exists a positive number § such that |f(x,y) — 4] < e
for all zand ysuch that 0 < |z — zo| < $and 0 < |y — yo| < 5. If the simultaneous
limit exists, then the two iterated limits exist and are equal. The converse does not
hold, Since the simultaneous limit can be nonexistent and yet the two iterated limits
may exist and even be equal.
*2.14 Continuous and Discontinuous Functions. A function f(z) is said to be
continuous at a point o if
lim f(z) = f(zo)

Trxo

that is, for ¢ > 0, there exists a & > 0 such that |f(z) — f(z¢)| < e for all z such that
[z — zo| < 8. In words this definition states that the limit shall exist at zo, that the
function is defined at o, and that these two values are equal. f(z) is continuous in the
interval [a,b] if it is continuous at every point z, where ¢ < z < b, and if at the end
points
- lim f(z) = f(a) and lim f(z) = f(b)
z—at z—b~

The quantity f(z) is said to have an ordinary discontinuity (or jump discontinuity
or simple discontinuity or discontinuity of the first kind) at the point zq if the right-
hand and left-hand limits at a point exist but are not equal; i.e.,

lim f(z) # lim f(z)
z— ot T—z0~
If the right-hand and left-hand limits exist and are equal but the function has a
different value, i.e.,
J lim f(z) = lm f(z) # f(xo)
T~ zot T z0”
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then the function has a removable discontinuity at the point zo. When the right-hand
limit or the left-hand limit or both these limits fail to exist at point z,, then the function
has a discontinuity of the second kind at the point z,.

A function is continuous on the right at @ point if the right-hand limit has the same
value as the function at the point. Continuity on the left at a point and continuity
on the right and left in an interval are defined in a corresponding fashion. f(z) is
called uwniformly continuous in the interval [a,b] if for ¢ > 0 there exists a § > 0
independent of the z, in the interval [a,b] such that |f(z) — f(zo)] < e for all z satis-
fying |z — zo] < 4.

Let f(z) be continuous in the interval [a,b], then the following results hold:

1. f(z) is uniformly continuous in the interval.

2. f(a) and f(b) have opposite signs; then there exists at least one value of z in the
interval for which f(z) vanishes.

3. f(a) #= f(b); then as z takes on all values between a and b, f(z) takes on at least
once all values between f(a) and f(b).

4. If f(z) is single-valued in {a,b], then there exists at least one point of [a,b] at which
f(z) takes on a maximum value. Likewise there exists a value of z where the minimum
is attained.

5. The function is bounded in that interval.

6. The function is uniquely determined at every point of the interval by prescribing
the function at a set of points everywhere dense in fhe interval [a,b].

2.2 Complex Variabies

2.21 Complex Plane and Sphere. Complex numbers have been discussed in
Art. 2 of Sec. 3-1. The set of complex numbers can be put into one-to-one corre-
spondence with the points of a plane. This correspondence associates the complex
number z =z + iy with the point in the plane whose rectangular or Cartesian
coordinates are (z,y). Because of this association this plane is called the complex or
z plane. This geometric association for complex numbers not only gives a geometrical
interpretation for operations involving complex numbers but also allows the use of
geometric terminology such as points and distances when discussing complex numbers.
When the improper point z = « is added, the complex plane is closed.

The number or point z can also be thought of as a vector that originates at the origin
of the coordinate system and ends at the coordinates (z,y).

The points of the closed complex plane can be mapped by stereographic projection
one-to-one onto the points of a sphere called the Riemann sphere (or sphere of com-
plex numbers). In this mapping, the south pole is placed at the origin and correspond-
ing points for the sphere and plane lie on a ray that originates at the north pole.

The following relations involve the absolute value Jz| = /2% 4 y® and the con-

jugate Z = z — 1y:

21 i22=21 i22.

2125 = Z:Zy; (21/2:) = Z1/Ea.

2 = lel. 22 = |22

. |21 = 25 is the distance between the points z; and z,.

. |22] > |21} says that the point 2, is farther from the origin than z,.

. |21 4 22| < |z1] + |25 corresponds to the geometric statement that no side of a
triangle is greater than the sum of the other two sides.

7. le1 — 23] > |lz1] — |22|| states that no side of a triangle is less than the difference
of the other two sides.

2.22 Functions of a Complex Variable. The concepts and definitions for real
variables generally have significance for complex variables. z is called a complex
variable if in the course of a discussion it assumes various complex values. Given two
complex variables z and w, w is called a complez function of the complex variable z if to
every value of z in the domain of z there is determined a value or values of w. Again
w is called single-valued if it takes on only one value for each value of z and w is multiple-
valued if it takes on two or more values for any value of z. Polynomial, rational,
algebraic, and transcendental functions are defined for complex variables in the same

D U 00N
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fashion as for real variables. The distinguishing feature is the use of complex con-
stants and the complex variable z in place of the real variable z.
A neighborhood of a point z, is the circular region

|z —zf <e

where ¢ > 0. The definitions of limit point, interior point, open set, and closed set
as given in the article on set theory are applicable to a set of complex numbers. An
open region, or just region, denotes an open set that is connected; that is, any two points
of the set may be joined by a continuous curve all of whose points belong to the set.
A closed region is a region plus all its limit points. A region is called stmply connected
if every closed curve within the region encloses only points of the region. A region
that is not simply connected is called multiply connected.

If an integral is taken along a closed curve that is the boundary of a region, the
integral is commonly called a confour integral. A closed curve is called positively
oriented if the interior of the curve lies to the left of the curve as the curve is traversed,
ie., the direction is counterclockwise. If only the initial and terminal points of a
curve coincide, then the closed curve is called simple.

The quantity f(2) is said to have the limit w, as z approaches 2, if for any ¢ > 0
there exists a & > 0 such that |f(z) — we < e for all z for which 0 < |z — 2z < 6.
Let w = f(z) = u + iy = u(=z,y) + iv(z,y), where z = z + 1y and % and v are real
functions of z and y; then the limit can be expressed by

lim f(z) = lim w(z,y) 4+ ¢ lim v(z,y) = uo + o = wo
Zz2—32p T=>xp 0
Yy y—yo
The results for limits with a complex variable follow almost directly, therefore, from
corresponding results for real functions of two real variables.
A single-valued function f(z) of a complex variable is called continuous at a point

20 lf
lim f(z) = f(e0)
. 22 -
The three requirements of the definition are, again, that first the function be defined
at zo, second the limit must exist as 2, is approached, and finally the limit value must
equal the value of the function at z5. The results of real variables concerned with
continuity lead to analogous results for complex variables. For example, if a function
f(z) is continuous in a bounded closed region, then it is uniformly continuous in that
region; it is bounded in that region, that is, |f(z)] < M where M is a finite positive
number; |f(z)| has a finite upper limit in the region; and if 2, is an inner point of the
region such that f(ze) # 0, then there exists a neighborhood of z, for which f@ = 0.
The derivative of f(z) at the point 2 is defined by

lim f(z) - f(zo) = lim ﬁ'f Ef'(zo)
z—>29 2 — 20 z—z0 AZ

where f'(z) denotes the complex number that the limit, if it exists, assumes. The
differentiation rules for real variables can be extended essentially without change to
complex variables. A function that has a derivative at every point of a region is
called differentiable in the region. :

Let w = f(z) be a continuous single-valued function of z in a region R, let o and 8 be
two points of R, and let C be a curve of finite length connecting the two points and
lying in B. Furthermore, let 20 = o, 21, . . . , 2, = 8be a sequence of points on C,
and let »; be any point on the curve between z;_; and zi. The integral of f(2) along C

between the limits o and 8, which is symbolized by /C f(z) dz, is defined by

s n
f@)dz = | f(z)dz = lim flne) (2 — 2:1)
/:1 /C n—w 'iZl
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where the limit indicates that n tends to infinity and that the absolute value of every
subdivision |z; — z;-1] tends to zero.

Since f(z) = u(z,y) + i (z,y) and dz = dw + i dy, the complex integral can formally
be written as follows in terms of real integrals:

/C f(2)dz = [C [u(z,y) dz — v(z,y) dy] + 7 /C (v(z,y) dz + u(z,y) dy]

The curve C may be represented by the real parametric equations
z = g(t) and y = h(t)

where 0 <t <1, a = g(0) + ¢k(0), and 8 = g(1) + #h(1). Let the functions g(¢)
and h(t) be single-valued and have continuous first-order derivatives; then

1 7 hl d s 1 ’ I
/Cf(z) &z = ﬁ) ug'(©) — oh' O] dt + 4 ﬁ) (09 (€) + uh'(®)] dt

The following elementary properties for complex integrals may be noted:

8 b ¥
1. d dz = dz; that is, th f two integrals
/;le(z) z + /ﬂ sz(z) 2 /; C.+C=f(z) z; that is, the sum of tw g
taken along two successive curves is equal to the integral taken over the entire curve.
2. / c f(z)dz = — ;C f(2) dz; that is, if the direction of integration 1s reversed,
a
the value of the integral remains the same except for sign.

3. /C Uoifi(e) + kafa@)] dz = ko /C f1(2) de + ke fc £2(2) de.
4 /C f(2) de

curve C.

2.23 Analytic Functions. A single-valued function f(z) which is differentiable,
that is, has a first derivative at every point, in a region is called analytic (or regular or
holomorphie) in the region. A function f(z) is called analyiic af @ point z, if its
derivative exists at every point of some neighborhood of zo.

The concept of analytic functions, or analyticity, is particularly unifying and
important for mathematical physics. Two necessary and sufficient conditions for the
function f(z) = u(z,y) + év(z,y) to be analytic in the region D follow:

1. Cauchy-Riemann Equations. The four first-order partial derivatives of u and v
with respect to z and y exist and are continuous in the region D, and they satisfy the
Cauchy-Riemann differential equations

< ML, where |f(2)] < M for any zon C and L is the length of the

du _ o ou 9y

ox oy oy ox

2. Cauchy-Goursat Theorem and Morera’s Theorem. The integral ,[C f(z) dz of the

continuous function f(z), when taken along the entire boundary curve C of any sub-
region of the region D, is zero.

a. Cavcay-Coursat TuEorEM (NECEsSITY). Let f(z) be single-valued and ana-
lytic within and on a closed curve C; then

/C f)dz =0

b. MorERA’s THEOREM (SUFFICIENCY). Let f(z) be continuous in a simply con-
nected region; then if

/C f2)dz =0

for every closed curve lying within the region, f(2) is analytic in that region.
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Although it is possible to formulate other necessary and sufficient conditions for
analyticity, it is customary to consider the consequences of analyticity whether they,
in turn, imply analyticity or not. Some important consequences of analyticity
follow. .

1. Cauchy’s Integral Formula. 1If f(z) is analytic in a region D, then Cauchy's
integral formula

fe) == [ L& 4

27 C'z——zo

is valid for every simple, closed, positively oriented curve C and for every point z,
interior to the curve C.

2. Higher Derivatives. If a single-valued function f(z) is analytic in a region, then
not only does the function by definition have a first derivative in the region but it also
has all higher derivatives. The formulas

! (@)
(n) = e —— =
;f (20) mile zo)"“dz n=12 ...

are valid with the same conditions used for Cauchy’s integral formula.
3. Laplace’s Equation. If f(z) = u + iv is analytic in a region, then the functions
u(z,y) and v(z,y) satisfy in that region the partial differential equation

This equation is called Laplace’s differential equation and is of great importance in
mathematical physics. A function that has continuous second partial derivatives
and satisfies Laplace’s equation is called a harmonic function. If f(z) = u 4 @ is
analytic, then » and v are called conjugate harmonic functions.

4. Taylor’s Series. 1If f(2) is analytic in a region D with a boundary C, then at each
interior point 2o, f(z) can be represented uniquely by a power series of the form

@«
an(z — 20)™

n=0

where Gn = lf o (20)
n!

This series, called a Taylor’s series, converges and represents f(z) in the largest circle
with center 2o that encloses only points of D. If z, = 0, a Taylor’s series is called a
Maclaurin’s series.

5. Laurent’s Series. Let f(2) be analytic in the annular region D bounded by two
concentric circles with center zo; then f(z) can be represented by the Laurent’s series

-]
an(z — zo)"

- n= — 0

where Qn = 2% /C' & — 207 f($) d¢

and C is a simple closed curve lying in D and enclosing the inner circle.

6. Identity Theorem. If two functions are analytic in a region, and if they coincide,
in any neighborhood of any point z, of the region or any curve terminating at zo or
even for an infinite number of distinct points with the limit point zo, then the two
functions are equal throughout the region.

7. Principle of the Mazimum Modulus. The maximum modulus of a function
analytic in a closed region always lies on the boundary of the region.
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8. Liowville's Theorem. If a function f(z) is analytic and its modulus |f (2)| is
bounded for all values of z in the complex plane, then f(z) is a constant. .

2.24 Singularities and the Classification of Functions. If a function can be
made analytic at a point 2o by merely assigning the function a new value at the point
2o, then the function is said to have a removable singularity at z,. An isolated singular
point of a function is a singular point that can be enclosed by a circle containing no
other singular point of the function. An isolated singular point z, of a function f(z)
is called a pole of order n if a positive integer n exists such that

(2 — 20)7(2)

is analytic at z = 2o and is different from zero when z = z,. Incasen = L, the pole is
called a simple pole. An isolated singular point zo of a function f(z) is called an
essential singularity of f(z) if

lim (z — 20)"f(2)

Fand ]
tends to infinity for all finite values of n. 2z = zois called a branch point of the function
F(2) if f(zo + pe'®) is not periodic in ¢ with period 2r, where p is chosen so that 2o + peip
is in the region of analyticity of f for all ¢.

The nature and location of the singularities of a function f(z) lead to the following
classification: :

1. By Liouville’s theorem if f(z) has no singularities, it is a constant.

2. If f(2) has only an isolated singularity at infinity, it is called an entire (or integral)
function. If the singularity is a pole of order =, then the entire function becomes a
polynomial of order n.

3. If f(z) has only poles in a finite region, then it is called a ineromorphic Sfunction
of z in that region. If f(z) has only poles in the finite z plane and either is analytic or
bas an isolated singularity at infinity, then it is called meromorphic.

4, If f(z) has a branch point it is a multivalued function.

2.26 Residues. At an isolated singular point a function f(z) may be represented

by the Laurent’s series

f@) = z an(z — 20)* + i bulz — 20)™

n=0 n=1

The expression z ba(z — 20)~" is called the principal part of f(2). The coeflicient b,
is defined as the r;sidue of the function f(2) at the point zo. The formula for b, is given
from the Laurent’s expansion by
1
bl—%/cf(z)da

where C is a simple closed curve enclosing zo.

The fundamental theorem of the calculus of residues follows:

Residue Theorem. Let f(z) be analytic except for a finite number n of isolated
singular points within and on the closed curve C; then

n

/C £@) dz = 2n% 2 R;

j=1
where Ry, . . ., R, are the residues at the n singular points.
When f(z) has a simple pole at 2o and has the form
g(2)

f@) = ;Lzz—)



Sic. 3-2) ANALYSIS 3-85
where g(zo) # 0, h(z) = 0, and A'(z5) # 0, the residue of f(2) at 2o is

9(20)
h’(Zo)

2.26 Conformal Mapping. Let w = f(z) denote a mapping or transformation
from the 2 plane to the w plane. If the transformation preserves the magnitude of
angles but not necessarily the sense, it is called ¢sogonal. If in a mapping both the
magnitude and sense are preserved between every pair of curves through a point z,,
then the mapping is called conformal. ' )

If a function is analytic at a point z,, then either f/(z) = 0 or the mapping w = f(2)
is conformed at zo. A critical point z, of a mapping is a point at which f/(z¢) = 0.
One of the most important results of a conformal mapping is that a harmonic function,
that is, a function K (z,y) which satisfies Laplace’s equation (92K /0z?) + (32K /9y?) = 0,
remains harmonic under the change of variables that arises from the conformal map-
ping w = u + @ = f(2); that is, (0°K/9u?) + (8°K/0v?) = 0. Furthermore, a
boundary condition of the type K(z,y) = C or of the type dK/dn = 0, where dK/dn
is the normal derivative, transforms into a boundary condition of the same type.
Therefore by using analytic functions it is possible to find in many cases a function
that is harmonic in a given region and satisfies boundary conditions of the above type.

The transformations w = (az + B8)/(az + 8), where ad — By # 0, called linear
fractional transformations, are conformal. In particular they map circles, which
include straight lines, since the lines are circles with infinite radius, into circles.
Other important properties of linear fractional transformations may be found in the
references. .

The transformation

w=Cif(z — 21)*(z — 2)™* - + - (2 — Tu_r) Fm-1dz + C2 = f(2)

where C; and C are arbitrary constants and the integral is an indefinite integral, is
called a Schwarz-Christoffel transformation. This mapping takes the z or real axis
in the z plane into a polygon of n sides in the w plane. The points w; = f(x;), where
1=1,2, ... ,nand x. = =, are the vertices of the polygon. The exterior angles
at the vertices w; (1 =1, 2, . . ., n — 1) are given by kir. The exterior angle at
wy is given by

kow =21 ~ (k1 +ka+ « -« F kai)w

2.27 Analytic Continuation. Riemann Surfaces. The identity theorem listed
under analytic functions leads to the important concept of analytic continuation.
Let fi(2) be an analytic function in a region D, and let f2(z) be an analytic function
in aregion D,. Furthermore, let the regions D; and D, have a subregion in common
in which the functions f1(z) and f.(z) coincide completely (or even on a curve in the
subregion). The functions fi(z) and f.(z) then define the same analytic function
F(z). fi(2) and fi(2) are called analytic continuations of each other. Furthermore,
f1(2) and f:(z) are called elements of (or partial representatives of) the function F(z),
which is analytic over the composite region formed by D, and D,.

It is often possible to start with a given element, such as a Taylor’s series at a given
point and by using power (or Taylor’s) series at other points extend the domain of
existence of the function by analytic continuation. If the process of analytic con-
tinuation is carried out as far as possible, the resulting function is called the complete
analytic function. A complete analytic function is called single-valued when its value
and behavior at every point zo are always the same, independent of any path by which
it may be reached by analytic continuation. A multiple-valued function is a function
that is not single-valued.

In considering multiple-value functions it is convenient to introduce the geometric
concept of a Riemann surface. A Riemann surface is a generalization of the z plane
consisting of a surface of more than one sheet arranged vertically. On each point
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of this surface the multiple-valued function has one and only one value, and the func-
tion is therefore single-valued on the surface.

2.3 Special Functions
Since over a thousand special functions have been investigated, it is possible to
consider here only a few of the more important functions of mathematical and reactor

physies.

2.31 Gamma Functions. Factorial, Polygamma, Beta. Definitions. 1. THE
GAMMA FUNCTION I'(z) is an analytic meromorphic function of z with simple poles at
z = —n, where n =0, 1, 2, . . . and with corresponding residues (—1)n/n!. The

following conditions then determine I(z) uniquely:

a. T'(z 4+ 1) = 2T (z).

b. If I'(z) is real and positive, then (z) is real and positive.

c. T(1) = 1.

d. [(d2/dz®T(2)|T(z) — (dT'/dz)?* > 0 when 2 is real and positive.
2

. WEIERSTRASS DEFINITION:
1 [(1+2) ]
. = zevz 1 ~VYe z/n
I'(2) Hl + n
n=

where v, the Euler-Mascheront constant, is defined by
J
= lim (Z % —In J) = 0.577215665 - - -
Jo »
i=1 :

3. EvLEr’s ForRMULA:

o= ()]

=1
exists except‘for z=-nn=012 ....
4. EULER’S INTEGRAL:
T = -/;) et di
holds for the real part of z greater than zero (Re z > 0).

Functional Equations:

T(z + 1) = 2@(2)
ror o =

T()T (z + }) r (z + g) RIS & (z +2= 1) = (2r)=1/2pbineT (n2)
n n n

For n = 2 this becomes T'(2)T(z + 14) = (2r)}22}4-2D(2z).

Special Values:

Tn+1) =nl=an-1n-—-2)---2-1 n=012...)
rq) =0!=1 rQ) =1
r(}s) ™

T'(1) = —4, the Euler constant
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Derivatives:
=@ _4d
Yi(z) = Te) @ (In I'(z)]
An(z) = g; [¥n-1(@], n = 2,3, . .. is called a polygamma function.

¥alz + 1) = ¢a(z) — [( 1)"”!12‘"
Sterling’s Formula or Asymptotic Formula for Large |z|:

In T(z) = (z—-}/)lnz—z—}- 14 In 2 + R(2)

where R(z) = 2 (—1)»t 3 B;;"z -+ Ry(z)
where larg z| <=
and where |Bn(2)} < By (z = rete)

2N (2N — 1)]e|2N—1 <cos g) "

The numbers Bi. are the Bernoulli numbers and are defined by By = 1, By = 34,

B 2041 = 0, and
2(2n) ! 2
Bsn (2m) 2 kin

In particular, n! = nre~® \/2xn [1 4 r(z)], where

1 1

0
<@ < 15; Tt 288

The Beta Function. This is defined by
B(mn) = fol 1(1 — )t de

where Re* m > 0 and Re n > 0.
Alternative definitions are

% m— /2
B(mm) = /;) (T-ii-ﬁ;dt B(m,n) = /(-) sin?"1 ¢ ¢os?~1 o de
_T(m)T(n) _

2.32 Hypergeometric Functions. Ordinary, General, Confluent. Ordinary H yper-
geometric Function. The hypergeometric differential equation

z(l—z)———+[c——z(a+b+1) ————abw—-O

has 2t the origin the general solution
w(z) = AF(a,bc;z) + Bzt~F(a +1 —¢,b+1 —¢;2 —¢; 2)
*The notation “Re” means “‘the real part of.”

.
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where A and B are arbitrary constants and a, b, and ¢ are parameters. .The function

(@) 2°

F(abiciz) = ©. n

n=

where (a)"=m§‘g)—m=(a+n——l)(a+n—2)~--(a+1)a (a)o =0

is called the hypergeometric function or series. The circle of convergence for this series
is the unit circle jz| = 1. :
The hypergeometric equation can also be written in the form

66 +¢c—1) —2(0 +a)(@ +bw=20

where the operator 8 = z(d/dz). -The singularities (regular) of the equation occur at
0,1,and «. Because of these singularities solutions of the hypergeometric equations
are also often written in terms of the arguments 1/2, 1 — 2z, 1/(1 — 2z), 2/(1 — 2), and
(1 — 2z)/z. Kummer’s 24 solutions and various relationships among them involve
these arguments and may be found in the references.

The six functions F(a £ 1, 8; v; 2), Fle, 8 £ 1; v; 2), and F(a, B; v £ 1; 2) are
called contiguous functions to the functions F(e,8;v;z). Gauss’s 15 recursion formulas
relate the contiguous functions by expressing one function in terms of two others.
These formulas may also be found in the references. -

_ In the references are found various integral representations, both real and contour,
for the hypergeometric function. The best known integral representation follows:

T(c) 1 e
W—b}ﬁ) Bl — )L — ) d

Rec >0 Reb >0 lzl <1
Whenz = 1and Re (¢ +b —¢) <0,

Flabie;2) =

T(e)I'(c —a — b)
F bel) = —— - -

@bieil) = T — aTee = )

Generalized Hypergeometric Functions. The generalized hypergeomeiric differential
equation

a P
[aﬂ 0+b -1 —z]] (0+a.-)]w=0

i=1 i=1

is of the order max (p, ¢ + 1). It has singularities at 0 and <« if p # ¢ + 1 and at’
0,1,and « if p = ¢ + 1. The solution regular at z = 0 is

2Fa(@y, « o apby, « . ybesz) = pFo(ashie) = ME‘
 (bi)n - 0 (B)s !

n=0
and is called the generalized hypergeometric series. It is assumed that the bs are not
negative integers. In general this series converges for all finite z if p < ¢, converges
for 2] < 1if p = ¢ + 1, and divergesforallz 2 0if p > ¢ + 1.

Contiguous relations, integral representations, and relations among various argu-
ments for the generalized function may be found in the references.

Confluent Hypergeometric Functions. The confluent hypergeometric function, or
Kummer function,

0

(@)n 2

!
&, ®)anl

Fi(a;bsz) =
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satisfies the Kummer's differential equation
d2w dw
i b — — =
z o + ( z) o aw =0

Kummer's first formula is
Fila;biz) = e Fi(b — a; b; —2)

Kummer's second formula is
Fi(a;2a;22) = enFi(a + ¥4; 1429

The three independent recursion formulas or contiguous relations are
F(abiz) = Fla — 15 b; 2) + flv’(a; b+1;2)

(@ + 2)F(a;b;2)
(@ — b+ DF(a;bz) =aF(a +1;b;2) + (1 —~b)F(a; b — 1;2)

aF(a 4+ 1; b; z)+z—~5v-l“(a b+1;2)

An integral representation when Re b > Re a > 0 is given by

I‘(b) /1 a— b—a—1gtz
=5 Jo o1l — f)b—aigts gf

FbE = e -

Most of the functions of mathematical physics can be expressed in terms of general-
ized hypergeometric series. Examples of functions that can be expressed as special
cases of a oF'y or a 1F'; appear in some of the following articles.

2.33 The Cylindrical or Bessel Functions. The cylindrical, or Bessel, functions
are solutions of the Bessel differential equation »

2,
z2%§+z‘é—f+(z2— »w = 0

This equation has a regular singularity at z = 0 and an irregular singularity at z = oo,
The functions

o

7o) = NG :)k+ D ( )zw

Ny2) =Y.(2) =
H,0()

— T o(2) cos var — J_,(2))

sin »

Tz +iY.(2) H,®@) =J,2) — iV, ()

I

are all solutions of the Bessel differential equation. J,(2) is called a Bessel function
of the first kind. The subscript » is the order of the function. Y, (or N,) is called a
Neumann function or a Bessel function of the second kind. H,™ and H,® are called
first and second Hankel functions or Bessel Sunclions of the third kind. It may be noted
that J, (z) and Y, (2) are real if » is real and z is positive.

If » is not an integer, it is customary to choose J,(z) and J_, (z) as the two linearly
mdependent solutions of Bessel’sequation. When » = n, where n is a positive integer,

it is necessary to use J.(2) and Y,(2) = lim Y,(z) for the two independent solutions,
r—n

since ‘
J_n(z) = (=1)nJ,.(2)

The Bessel coefficients, that: is, the Bessel function of the first kind of integer order,
oceur in the following expansion:

@

exp [M42(t — t9) = 2 Ta(tr
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The Bessel differential equation has the form, when 2z is replaced by 1z,

2,
22%-‘-2%— 2+ »Ww =0

The functions

1,@) = e=¥re ], (zei¥ir) = i S S (E) b
L R v 1) \2

and K,(z) = ’123 vt D (32)

[SEc. 3

which are solutions of this equation, are called, respectively, modified Bessel {unctions
of the first and second kind. Again if » is not an integer, I,(z) and I_,(2) are taken as
the two independent solutions, and if » is an integer, I,(2) and K, (2) are taken as the

two solutions. I,(z) and K,(z) are real when » is real and z is positive.

Some of the more useful relations involving Bessel functions follow. Z, is used as
an abbreviation for ¢iJ,(z) + c2¥,(z), where ¢1 and ¢; denote arbitrary constants.

Functional Equations:
2

Zﬂ—l + Zv+l = ?yZ,.
2 sin »r
JVJ—y+1 + Jy—lJ_y =
wZ
2
JyYyor — Yy = =
w2
Iy — Iyl = — 28027
w2
1
IyKv+1 + Iv+lKr = ;

Derivatives:

Z'y =Z1Z,.y — Zyy] = '_;..’fzy +Z, = gzv — Zys

1
2
[27Z,(az)) = az*Z,_1(az)

Zo= -2 Zh=Z0— I

ITo, —J Ty = — 2 sin yr
kr
J,Y, -J, Y, =~
v
I, ~I'_ I, = — 2 sin vr
T2
, 1
VK, - K\, = =~

Integral Representations:
k.
Ja(z) = 1 / cos (zsin ¢ — ne) de
x Jo

2 (z)"fl — )t
J,,(z) = m 'é 0 (1 t) cos 2t di

Representation as a Hypergeometric Function:

J,@) = (9?({::#—1)‘“ (,, +%; 2 + 1; 2iz) = F((j—/i%om (,, +1

H

- 1zz)
4
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General Differential Equation:

22w" + azw’ + (b2 +¢)z =0

w=212%g (2 \/I_)zm/'-’)
m

2

V(1 —a)~4c

if m # 0and b =0,

where v = 1
m
Special Cases:

J3(@) = Yoyu(e) = SB2

Ogea) "
- p - co8 2
J4@) = — Yy(z) )
= —1 iz | = i —iz
0 = G HH0 =

2.34 Legendre Functions. The Legendre functions are solutions of Legendre’s
differential equation

d*w dw u? _
(1—zz)y—-z’z:i;-}-[v(v-f-l)————-—<1_22)]’w—0

where » and u are arbitrary parameters. The functions

1 z+1)¥én ( 1 1)
» = —v, sl — - — =
Pree) I‘(l—u)(z—l FA\=nr+Lil—uis—5e
and
: _e“"-lr%I‘(v+ﬂ-+1)(22—1)%“.(1 1 1,1 .1 31)
R T o 7o R R A UL T A T e

are linearly independent solutions of Legendre’s equation. P,#(z) and Q,%(z) are
known respectively as Legendre functions of the first and second kind. Since Legendre’s
equation is not changed when z is replaced by —~z, u by —p, and » by —(» + 1), it
follows that

- Pyu(+z2) P_,iu(42) Q*(£2) Qop_r®(42)

are also solutions of the equation.

The most common Legendre functions occur when x = 0. The superscript 0 is
dropped in this case, and the Legendre functions are written as P,(z) and Q,(z). In
case u 5 0, the functions are often called associated Legendre functions. The following
simple relationships exist:

&P, ()

P = (o — 1 X222

@ = @ — 1 LA

and CQke) =@~y PE@ o
dz*

When » is a nonnegative integer n, the functions P,(z) become polynomials called
the Legendre polynomials. In hypergeometric function notation

= (=1)=@n)! 11
Pzn(z) = 22"(71,!)2 F (—'ny n + 5! '2“! 22)
= (=12 + 1! 3.3,
and R Popyi(z) = W zF (—n, n + 23 zz)
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A convenient formula for the Legendre polynomial is

known as Rodrigues’ formula. These polynomials form an orthogonal system on the
interval [—1,1] and have all their roots real and simple and between —1 and 1. The
Legendre polynomials occur in the following expansion:

(A — 22t + )% = 2 Po()tr
n=0

Some useful relations follow:

Functional Equation:
(n + D)Puyr = 22n + )P, — nP, 4
Derivatives:
@2n + )P, = P'pyy — Py
nP, = zP’, — P,
(n+ DPy = Pluyy — 2P,
Laplace’s Integral:

Pu@) = 1 /” [(22 — 1)% cos ¢ + 2] do
- Jo
Special Cases and Values:
Po@) =1 Pig) =z =cose  Pax) = 343 — 1) = 34(3 cos 26 + 1)

Pylz) = 34(52% — 3z) = 34(5 cos 3¢ + 3 cos ¢)
Py(z) = 14(3524 — 302% + 3) = 344(35 cos 4p + 20 cos 24 + 9)
2n)!
P.1) =1 P.(—1) = (=1)» Pyrii(0) =0 P2 (0) = (=17 52(,,(7:3!)2

"4 Sum Formula:

Z @k + DP@Pily) = (n + 1)
k=0 o
Orthogonality Relations:

Pu(@)Prs1(y) = Pay)Pani(z)
Yy —zx

1 ) 1
[ P@Pa@raz=0 nwxm [} Pz = 2n2+ :
2.35 Orthogonal Polynomials. Tschebyscheff Polynomials:
T.(2) = cos (n arc cos z) U.(z) = sin (n arc cos 2)
To(z) =F (n, —n; %; 1,; £

' In@1E) b i o itm e

-1 \/1 a2

fm=ns0
fm=n=0

The Tschebyscheff polynomials of the first and second kind, 7,(z) and U.(z), are
linearly independent solutions of

(1 —z2)w —zw +n%w =20
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Hermate Polynomials:

Ho(@) = (=1 T omeiry

2" n! 2 2
Hona(2) = (= i)" (2n + Dt (—n, )
2
f_: e 2 H,(2) Hu(z) dz = 0 ifm=n
= (2x)¥n! fm=mn

H', —zH', +nH, =
Laguerre Polynomials:

La@(z) = e':’;ad . (ena) = (a 1— 1) Fi(—n; a +1;2)

‘/(—) ® ezl @, @) dz = Q ifmsn

et Unrg i) ime=n

!
L, @ (z) satisfies 2w’ + (@ + 1 — 2)w’ + nw = 0.
Jacobi Polynomials:

(=11 =271 + 2)F d~
PATH . d n

P lap)(z) = (a+1)nF( —n,n+a+8+1; oz+1}——z)
P, @8 (z) satisfies

Q-2 +B~a—ela+B8+2l +nn+a+B8+1y=0

PueP(e) = 1L = 2)a(1 + 28+

Gegenbauer Polynomials:

Co(z) = (_27%)_'% (—n, n 4 205 + %; 1—;—2)

2.36 Dirac Delta Function. In many problems of physics and engineering it is
expedient to introduce a quantity §(z) ealled the Dirac delta function (or just 8 func-
tion). 8(z) is not a proper function in the sense of having a definite value for each
value of the independent variable. Formally a Dirac delta function (z) is defined
to be zero except at x = 0, that is,

§5(x) =0 z #=0

/_: §z)de =1

This formal definition does not give a clear picture. It may, however, be inferred
that the & function is very large near = == 0 but is zero outside a very small interval
about z = 0. It is not important in applications to know the precise variation of
8(z) with z. For example, the § function may be defined by

but is such that

8(z) = lim sa(x)
40 -
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where

i
(=}
8

S D

sa(z)

The following formal formulas may be used with caution:

[ @sads =50 [T @i — 0 ds = s@

f@)z — a) = f(@)é(z — a)
z8(z) =0 8(—z) = 8(x)

/_: 5(a — z)8(z — b) dz = 5(a — b)

5(z* — a?) =-§1& 5z —a) + 8@ +a)] a>0
Laplace Transform:.

j:) Srye=dr =1

5 1 /’7+iw . d
@ = 30t Jy—in %

Fourier Transform:

f” s(z)eis dz = 1

5(x) = L / ez dg
2 J—=
Derivative of Step Function. Let

Si) =0 - <z <0
=1 0<z < »
3(z) = S'(z)

2.87 Other Functions. Incomplele Gamma Functions:
z x® .
v(a,z) = /;) e ieldt = - WFi(e; 1 +a; —x)

T(a,z) = / el dl = T(a) — v(a,7)
x
Error Functions:

Erfz = ﬁ) et dl = Ygy(34,7%) = ziF1(36;34;—2?)
Erfcz = /z " etdt = 14T(4,5Y) = Yntt — Exfz
Ezxponential and Logarithmic Integrals:
Bi@) = —Ei(~2) = j;” 4l dl = T(0,2)

. z dt
L(z) = ﬁ) Eg_t = E;(log z).
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Sine and Cosine Integrals:

si(@) = /:S‘T‘”dt - -21;_[E,~(ix) — Ei(—ix)]
Si@z) = ["9lg o7 4 si(z)
Jo 7 2
. % cos ¢ 1 . .
Ci) = [79% ay = Limin) + B(~im)

Fresnel Integrals:
Clx) = )% /;z t=% cos ¢ dt

8(z) = (2m)% J[O T ¥ sin ¢ dt

Elliptic Integrals:

. . A dx
First kind: F(\NE) = o [0 =250 = Fan)t
A — 22\ ¥
Second kind:  E(\E) = ﬁ) %)
Third kind: N de
Ir na. 1r( 4] ) = 0 (1 +. VI2)[(1 _ .’122)(1 _ kzxz)]%
Complete Elliptic Integrals:
F(1,k) = K(k) = JonF (34,%4;1;k%)
E(Lk) = E(k) = L4wF(—14,}3;1;k?)

=(1,n,k) = w(»,k)

3 SERIES AND EXPANSIONS OF FUNCTIONS
3.1 Infinite Series

Let so, 81, 82, . . . be an infinite sequence of numbers, where sy = ao, 81 = a¢ + ay,
and generally
Sn=a0+a+ - +an

then if the sequence {s,} has some convergence property, the infinite series
z Gn =00+ a1 + - -
n=0

is said to have that convergence property. The numbers s, are called the partial

sums. If the infinite series a. is convergent, the limit of the sequence {s,} is

n=0

called the sum or value of the series. If all the terms a. are such that a. > 0, then
o

E a. 15 called a series with positive terms. A series whose terms are alternately posi-

n=0
tive and negative is called an alternating series.
o

An infinite series @ is called absolutely convergent if the series of absolute values

n=0
o0

2 lax| is convergent. If an infinite series is convergent but not absolutely con-

n=0

-
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vergent, it is called conditionally convergent. The following results deal primarily with

Al
convergence properties. The summation symbol Z by itself will imply Z .
. n=0
3.11 Fundamental Theorem. A necessary and sufficient condition that the series
Za, is convergent is that for any e > 0 there exists a number N = N(e) such that for
every n > N and every integer m > 1,

I5n+m - Snl = [an+1 + oy + - - - + an+k| <e

3.12 Comparison Test. Let Zc, and Zd, be two series with positive terms, and
furthermore, let Z¢, converge and =d, diverge. If a, < ¢, for all n greater than some
N, then Za. converges. If a, > d. for all n greater than some N, then Za, diverges.

Root Test. 1If the series with positive terms Za. is such that for all n > N,

Ve, <a<1

then the series is convergent. However, if for all n > N,

Va, > 1
then the series diverges.
3.13 Ratio Test. Ifforalln > N, a. > 0, and

ol g < 1
an

the series Za, is convergent. However, if for all n > N,

Gnst >1
aﬂ
the series Za, is divergent.
3.14 Alternating Series. An alternating series Za. is convergent if la.| < |a._il
and if lim @, = 0. The error made in taking the sum of the first n terms of the

n—r
alternating series Za. as an approximation to the sum of the series is less than the
absolute value of the (n + 1)st term.

3.16 Rearrangement Theorem. The sum of an absolutely convergent series
remains the same whatever change is made in the order of the terms of the series. In
a conditionally convergent series it is possible to rearrange the order of the terms so
that the new series converges to any desired value.

3.16 Cauchy’s Products. If two series Z¢; and Zd; are absolutely convergent

N o g
with respective sums C and D, then the Cauchy’s product cidik = Zc;Zdy is

7=0k=0
also absolutely convergent and has the sum CD.

3.17 Geometric Series. The geometric series r* is convergent if |r| < 1,

a
118
o

with sum 1/(1 — 7), and is divergent if {r|] > 1.

3.18 Harmonic Series. The harmonic series z (1/n) is divergent.

n=1
Eel

3.19 Hyperharmonic Series. The hyperharmonie series z (1/nF) is convergent

n=1

when k& > 1 and is divergent when k& < 1.
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3.2 Infinite Products and Continued Fractions

3.21 Infinite Products. An infinite product

de—_-dldzda"‘dn"'

F=1
is a symbol representing the sequence of partial products

Pn=dideds - - - d,
An infinite product H d; is said to have a convergence property if for every j greater
i=1
than some J no factor d; vanishes and the sequence of partial products beginning at J
has the convergence property. It follows that a convergent infinite product has the
value zero if, and only if, one of its factors is zero. Since the sequence of factors d; in
a convergent infinite product tends to 1, it is customary to write the product as
0 0 E @ .

H (1 + a;) instead of H d;. It is common to write = in place of H .
=1 j=1 ‘ i=1
. The product =(1 + a;) is called absolutely convergent if the product =(1 + |a;i]) con-
verges. It can be shown that the product »(1 + a;) is absolutely convergent if, and
only if, Za; converges absolutely. :
More generally it also can be shown that if Sa;2 converges absolutely, then Za, and
=(1 + a.) converge and diverge together. _ ] :
The value of an infinite product »(1 + a,) is unaltered by any rearrangement of its
factors if, and only if, the product converges absolutely.
It may be observed that formally

(1 + a;) = eln [¥0+a)] = ¢ZIn (1+ap
3.22 Continued Fractions:

F, = Dpn = ao + bl/Dln
Dy, =a;, + bs/Dya

Dy, = Gt + bufan,

where ao, @1, . . ., @, by, . . ., b, are given. The evaluation can be made by
beginning with D,._,,, and working back. The result F, is called a continued fraction.
If there are infinitely many a; and b;, and if every b; s 0, an infinite sequence Iy, F,
F,, . . . is defined that may or may not have a limit F. In case it has a limit, this
limit will be called the value of the infinite continued fraction, which is then said to
converge and which can be represented

'F=ao+bl/a—1+bz/‘0«—2+"'

The slant line and bar may be understood here as a special sign of aggregation signify-
ing division by everything that follows. )

A finite continued fraction F, is a function of 2n + 1 variables ao, . . ., ao,
by . . ., ba By the ordinary rules of algebra one can express
F, n = An/ Bn
where 4, and B, are polynomials in these 2n -+ 1 variables. Tt is easily verified that
Ao = Qg Bo =1
N A = aar + by Bi=a
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and in general, it can be shown inductively that

4;
B;

a.-A,-_l + biAi—2
aiBi_y + biBi_s

[}

As functions of the variables ¢ and b, the A; and B; are called continuants. If one

represents
A.‘=K(b"""b‘)
andy, - . - ,8i
thus exhibiting the variables, then
B = K bz,...,b;)

a0z, . . . 40

Two important properties of continuants are expressed by the identities

b;,...,bi)=K( b,‘,...,bl)
Aoyd1y o o » 3Q5 Qiydi1, « . . 500

and K (C;bl,clczbz, e ,cn—ICﬂbﬂ) =c - - K by . .. sba )
Q0,101,C202, . . . yCnln ag,d1, . . . ,0n

forany ey, . . . , . In particular it is always possible to choose the cs so that every

@, =ay= -+ =1 or so that every by = by = + - - =1, provided only that no

a; = 0in the one case and no b; = 0 in the other.

If every b; = 1, then F is said to be periodic or recurring in case for some positive
integers n and » it is true that @i,, = a: whenever ¢ > n. The value of any periodic
continued fraction can be expressed in the form F = (4 + B*)/C, where A, B, and C
are polynomials in the variables ao, . . . , @, and conversely. ‘

If the a: or the b; or both are functions of a variable z, then the continued fraction
defines a function F(z) wherever it converges. For questions of convergence the
following identity is often useful:

Fn - Fn_l = (—1)"~1b1b2 cot bn/(Ban—l)

The following are some useful continued fractions:

tanz = 2/1 — 22/3 — 2*/5 —22/T — -+ - Q)
tanh z = z/1 + 22/3 + 22/ +22/T + - - - )
tanlz = z/1 + 1222/3 + 2%2/5 + 3%2/7T + - - - 3)

tanh—z = z/1 — 1222/3 — 2%2/5 — 3%2/7 — - - - )

expz =1/1 —z/1 +2/2 —2/3 +2/4 —z/5+ - - - (5)

3.3 Power Series
The series

L
@ +ax+ax?t - Fat o = 2 anz"
n=0

where z is a variable and the numbers a., called coefficients, do not depend upon z, is
called a power series in z. For power series the primary question is for what values of
z does the resulting series of constants have various convergence properties. The
following theorem applies to power series that converge for some value of z and
diverge for other values.

3.31 Fundamental Power Series Theorem. There exists a positive number r such
that Za,z® converges absolutely for every |z| < r but diverges for every |z| > r. If
z is a real variable, the interval (—r,) is called the interval of convergence and r is
called the radius of convergence. If the real variable z is replaced by a complex
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variable z, the number r is again called the radius of convergence and the circle jof = ¢

is called the circle of convergence.
®

The series an(x — To)" is called a power series in z — zo. Letting 2’ = z — z,,

n=0
this series converges by the above theorem when |z ~ zo| = |2'| <. The quantity
zo is called the center of the series.
Some of the properties of power series in a complex variable are discussed in the
article on complex variables. Some operations for power series follow:
In the common interval of convergence for two power series Za.2" and Zb.z",

z Anz® + 2 b = z (an + bn)z (6)
oo © @ n

(Fe) G5 Got)e o

=0 . n=0 n=0 j7=0

Let z, o, and B be in the interval of convergence; then
. d—‘i (z a,.fc") = z Nz L (8)

8 a

a,.x" = _on xn+l 9
./; (2 ) 2 n+1 ®

Table 5 presents some of the common power series.

]

Table 6. Power Series
Maclaurin Series for f(z): N
0
1. z Gnx™
n=0
£(0)
nl
Taylor Series for f(x):

©

where an =

2. an(z —~ zo)™
n=0
(n)
where an = /——(ﬂz
n!
Binomial:
3. (z + ) =27 + navly + "(nzT L anryr 4 MO ;)'(" -2 LS TA y? < z?

When n is a positive integer, the series terminates at y»

n(n — 1) nn — {n — 2) "
2f 31 r

When 7 is a positive integer, the series terminates at zn

4 lxzopr=11%nz+ 2% + 4+ oo z<1

Bxponential and Logarithmic:

1,1, 1 . 1\~
Soe=ld4mt oot ~=hm(1+;) = 2.718281828

n—> @
z? | x?
6. e =1+f¢+§!'+é'i+

(zIn a)?

! + 3!
8.1nz:=x—;—l+%(2_l)z-f-%(z_l)3 z >33

z z

v L GEY HEGE) ] oo

(zln a)3

7T.0*=14+2zlna+ oY

+..«
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10. In(1 42 =2 —

1i.ln{(a +z) =lna

MATHEMATICS
Table 6. Power Series. (Continued)
Yoo 4 Mot — Mt 4 <

+2[ﬁ;+%(2a1z)s+é(2aiz)s+

12.1n(%—%)=2(z+?§7+,’_;+...) 22 < 1

Trigonometric and Inverse Trigonometric:

. PR
13.sm:c—:::—a+5—.7_!+
x? zt  zb
14.eosz—1—§+.ﬂ_a+
23| 225 | 17z7 6222 x2
15. tanz =z + — + — + 5= <=
+ 3 + 13 315 2,835 4
1 x 7z 31zt
16, escz = - + 2 4. 22 < 7
:Tatea T i
2? 5z¢ | 6lz® x2
17.secx-—1+§+zl—+_6_!_+ z¢<z
3 9 7
18.cotz=1—£—_z—-—i—_z_:—‘~- z? < 72
z 3 45 945 4,725
s z? 3zs 3 - bz’
19. sin“tz = R AU T <1
s z x+2.3+2'4.5+2.4‘6_7+ 22 <
20.tan‘lz=f_l _1__._1_ x> 1
2 4 3z b5z
_21.tan‘1z=x_}/3xz+l/gzs_}4z1+... z2< 1
1 1 3 3:5
22, sec-lz = & — = — — — _ _ te
T T 6 2-4-53 2-4-6-77 # <
23. cos“:c=1—r—sin‘1z,cot‘1x=Z—tan'1z,CS0"x=I-—sec“:c
2 2 2
Hyperbolic and Inverse Hyperbolic:
. zt  xzs T
24.smhz—z+§i+5—!+ﬂ+
2 g4
25. cosha = 1 + = 4+ = + =
coshz =145 +5T5
7
26.tanhz=x—f 228 1727 zz<f
3 15 315 4
: 3zs 35z
27. sinh-1z = 7 — e 4 ——— — 1< 1
sin r=z 53 3Th D 37376 7+ z? <
. 1 3 3-5
28. h-1z = log 2 — .
sinh™ 2 =log 22 + 5o, = T T4 T 246 628
29. cosh~' z = + log 2z — _ 3 - 35 _
2. 2x2 2.4 - 4zt 2:4-6- 6z"
3 5 7
30.tanh‘lz=z+z_+.z_+f_+-.. z2< 1
3 5 7
2 L3
31.1nsinz=lnz—i_..£‘_.__f__... 22 < w2
6 180 2,835
2 4 s 8
82 moosg = — Doz _ 1. LT
2 12 45 2,520 4
2 Tzt 6228 e}
33, Intanz =Inz + = 4+ = 4 ——+ + - - 1™
z=lnz+3+ 55+ 283 ¥
i 2 3z4¢ 8x5 3z 5627
4, gsinz = Tt _ex 2T _ T
S L T v R T 1
z? 4zt  31x*
COBZ — —_ =2 . .
35 e e(l TR TR )
2 3z3 | 9z¢ | 37zx? x
6. etanz = T AT T L A E Y w
e A T T TR #<

]

[SEc. 3

a>0, —a<z<=

z>1
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3.4 Orthogonal Functions

3.41 Sturm-Liouville Series and Other Expansions. Two vectors a and b in
n-dimensional space may be represented by rectangular coordinates; that is,

a = (a, as . . . ,an)
k3

and b = (by,bg, . . . ,ba). The square of the length of the vector ais given by z a2 If

i=1
n

z a;® = 1, the vector a is a unit vector and is said to be normed or normalized. The

j=1 L
cosine of the angle between the two vectors a and b is given by
n

d,’b,’

GG r

The quantity z a;b;, denoted by (a,b), is called the ¢nner product (or scalar product)

. cos § = (10)

n

i=1

n

of the two vectors. The quantity a;? = (a,a) is called the norm of a. The vectors
Jj=1

a and b are orthogonal (or perpendicular) if (a,b) = 0. A set of vectors {a;} is called

orthonormal, that is, orthogonal and normalized, if (a;ar) = d;, where 8;: is Kro-

necker’s §, which is 0 or 1 acecording to whether j = k or J = k. An arbitrary vector

g in n-dimensional space can be expressed as a linear combination of a set of n ortho-

normal vectors {a;}; that is,
n

g = i (gaja; = 2 iR ay

=1 i=1

Most of the notations used for n-dimensional space can be extended not only to
countably infinite spaces but also to-certain spaces of functions. An example of a
countably infinite space is the special Hilbert space consisting of all points

a=(ayds . . . ,qj « . +)
such that 2 a;? = (a,a) < «.
i=1
In dealing with a function f(z) it is customary to speak of f(x) as a point or a vector

in the function space. Let the real functions f(z) and g(z) be defined on the finite
interval a € z < b; then the inner product of the two functions is given by

ﬁ * {@)e@) de = (f,g) (12)

If the inner product is zero, that is, (f,g) = 0, the two functions are said to be orthogo-
nal. The norm of the function f(z) is given by

[? verds = g (13)



3-102 MATHEMATICS [Sec. 3

A set of functions {f;(z)} is said to be orthonormal on the interval ¢ <z < b if
b
[ 1@t @ = (ot = b (14)

The concept of orthogonality for functions of a single variable can be generalized in
two particular important ways. If f(z) and g¢(z) are complex functions of a real
variable z on the interval a < z < b, then f and ¢ are sald to be orthogonal in the

Hermitian sense if

L * fo)g@) dz = (fig) = 0 (15)

where g(z) is the conjugate of g(z). Often there is associated with a set of real func-
tions f;(z) a function w(z) > 0, on the interval @ < 2 < b, such that

L b @i @)e@) ds = 8 (16)

In this case the set is called orthonormal on [a,b] with respect lo the weight function w(z).
The orthogonality concept can also be extended to infinite intervals and to functions

of more than one variable.
- The functions f1(z), f2(x), . . . , fa(z) are called linearly independent on the interval
n

a <z < bif the only constants ¢; that satisfy the equation 2 ¢;fi(x) = 0for all z
J=1

of the interval are the constants ¢1 = ¢z = - + - = ¢, = 0. A set of orthogonal
functions is likewise a set of linearly independent functions. An orthogonal set
{fi(x)) is called complete in a given function space if the only element of the space that
is orthogonal to every f;(z) is the zero function; that is, (f,f;) = 0, for all j, implies
f=0

Let {e;(z)}, G = 1,2, . . .), be a countable orthonormal set of real functions on the
interval ¢ < z < b, and consider the possibility of representing a function f(z) on that

interval by
o«

flz) = z ¢ipi(z)
j=1
Formally multiply both sides of this equation by ¢i(z), and integrate both sides over

the interval, the integration being carried out term by term on the right-hand side.
This leads to the formal result

(fipx) = cilpion) = Ck
2
The numbers
b .
o= Ge) = [[f@e@d  i=12 ... an

are called the Fourier constants or coeflicients of f(z) corresponding to the orthonormal
system {¢;(z)}. The series

cie;(z) where ¢; = (f,¢;) (18)
i=1

is called a generalized Fourier series or ezpansion corresponding to f(z).
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Given a finite orthonormal set {o;(z)} ( = 1,2, . . . , n), the best approximation

in the mean, or in the sense of least squares, to the function f(z) on the interval
n

a < z < bfor the quantity z a;¢;(x) is given by letting a; be the Fourier coefficients
i=1

o = o) = [ f@)eito) da that s,

b - 2
INECET IR
i=1
is minimized when a; = ¢;.
The relation
n

b
(frei)? = ¢t < [f@)]2 dz = (f,f) (19)
=S s

j=1

[t

<,

is true for any n and is known as Bessel's inequality. If {¢;(z)} is a complete ortho-
normal set,"then Parseval’s theorem

w0

i (Fron)? = 2 et = [ * @) ds (20)

i=1 =1
holds.
3.42 Sturm-Liouville Series. Systems of the following types:

@) + (p + gy =0
ay(a) + aw' (@) + asy(d) + ay’() =0 21)
Bwyla) + Bay'(a) + Bay(d) + By’ () =0
where the prime (') denotes differentiation with respect to z, are known as Sturm-
Liouville systems. The coefficients r(z) > 0, g(z), and p(z) are taken to be continuous
functions of z in the interval @ < z < b, and X is an arbitrary parameter. - The great
interest in S-Li (Sturm-Liouville) theory arises largely from the fact that many
boundary-value problems in physics and engineering lead to questions that can be
answered by using S-L theory.
Consider the general second-order linear differential equation

@Y+ H@Y + [fo@) + Ao@)ly = 0 (22)

where X\ is a parameter and where fo > 0, f1, fo, and go are continuous functions of z.
The general homogeneous boundary conditions

awy(@) + azy'(@) + asy(®d) + ogy’'(d) =0
Bay(a) + Bay'(a) + Bsy(®) + Bay/'(®) =0

are taken to be linearly independent. Upon dividing the general differential equation
by f:(z) and then multiplying the result by r = exp [f(f1/f2) dz], the 8-L, equation

ry'@) +p +gly =0 (23)

where p = (go/f2)r and g = (fo/f2)r, is obtained. It follows that the S-L system is
quite general.
The differential equation of an S-L is self-adjoint. An S-L system is called self-
adjoint when
(e1Bs — Brag)r(b) = (auBs — asBy)r(a)

The most common type of self-adjoint S-L system has two additional conditions.
First p(z) is assumed not to vanish for a <z < b. In this case both r(z) and p(z)
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can be assumed greater than zeve.  'The second condition is that the boundary condi-
tions are of Sturmian type; that is, .

cw(@) +aw'(@) =0 and  By(®) + /() =0 (24)
where lay] + Jaa] >0 and 181 + 184 >0

The following three theorems summarize the primary results of S-L theory:

Oscillation Theorem. The system of the Sturm-Liouville differential equation with
Sturmian boundary conditions and positive p(z) and r(z) has an infinite number of
real characteristic numbers that may be arranged in a monotone increasing sequence
N <A <As < - - - that tends to + «». Corresponding to each simple eigenvalue
A, there exists an eigenfunction ¢.(z), unique except for a multiplicative constant.
Each ¢.(z) has exactly n zeros in the interval a <z <b. :

Ezpansion Theorem. Given an arbitrary continuous and piece-wise differentiable
function f(z) that vanishes at the end points of the interval when ¢o(z) vanishes; then
the series ’

0

z cnpn@)  where cn = [ ? @) @ pue) dz = (f0) 25)

n=0

converges uniformly and absolutely and has the sum f(z).
The eigenfunctions fulfill the orthonormality conditions

b
oo = [ p@ei@honte) do = 5. @6)
where p(z) is the weight function. The normality can easily be attained by letting
~ ~14 b ~¥%
?i(@) = oilene) ™ = o; [fa p(z)e*(x) d:v]

Equi-convergence. Theorem. Given that f(z) is integrable over the interval (a,b);
then the S-L expansion behaves as regards convergence in the same way as an ordinary
Fourier series. : : : .

The transformation :
Y(@) = (pr)%y

18 : b 15
where 2z = 1 f i (2 dz and J = 1 f (2) dz
JJa \r rJa \r

takes the S-L equation into the Liouwille normal form
2y
 + I — @Y @) =0 (27)

where k2 = J2\ and g(2) = (pr)~*(d?/dz?)(pr)¥ — J2(g/p).

If the interval under consideration is infinite, or if r vanishes at either or both ends
of the interval, the 8-L system is called singular. Results for singular S-L systems may
be found in the references. In certain problems, such as those occurring in reactor
theory, it is necessary to consider generalized 8-L systems that have discontinuous
coefficients or solutions. This arises because the problem is multiregion and has
interface conditions. The results of ordinary S-L theory can often be extended to
these cases. : : o

The trigonometric series

Ygao0 + z {(@n €08 1z ~+ by sin 1) ) (28)

n=1
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is called a Fourier series corresponding to f(x) in the interval (—=,x) if its coefficients
are given by

=1 /" f(&) cos nt dt and by = 1 /ﬂ f(&) sin nt dt
T l—7 aJ -7

When f(x) is'an odd function, that is, f( —z) = — f(x), a, = 0 and the coxrespondmg
series is known as the Fourier sine series. If f(z) is an even function, that is

f(—2) = f(z)

b, = 0 and the corresponding series is called a Fourier cosine series. More generally
the Fourier series corresponding to f(z) in the interval ¢ < z < b is

1 b 2 i /b 2nr(l — 2)
- _c — 2 4 2
b—aﬁf(t)dt,—*—b—a kaf(t)cos — t (29)
n=1
The exponential form for a Fourier series is
w0 . . o )
) 2 ¢k exXp (2_k1rw) where ¢, = L / f(@® exp (— J_cmt ) dt  (30)
. —a b—ala b—a

A number of theorems giving conditions under whick a Fourier series corresponding
to a function converges in some manner to that function are given in the references.
The following is an example of a Fourier theorem.

Fourier Thegrem. If f(z) is sectionally continuous on the interval (—m,r) and
periodic with period 2, then the Fourier series corresponding to f(z) in the interval
(—m,x) converges to the value }4{f(z*) - f(z™)] at every point where the right-hand
and left-hand derivatives exist.

The set {1/ \/Zr, cos nz/ \/;, sin nx/ \/_ } forms a complete orthonormal set for
the space of all functions that are sectionally continuous, are assigned the value
14[f(z*) + f(z)] at the points of discontinuity and the value L4[f(—=+) + f(r“)] at
the end of the intervals, and possess right-hand and left—hand derlvatlves at every
point of the interval (—w,r).

Fourier series not only are special cases of S-L series but indeed are the simplest
cases of 8-L series, being associated with the differential equation ¥ 4 Ay = 0.

Legendre Series.” The Legendre expansion or series for a function f(z) in the interval
(—1,1) is given by

©

Z GPaz)  whore a, = 3"_+_1 / FOPAG) de 31)
n=0
and where P,(z) is the Legendre polynomial of degree n. The Legendre series is a
special case of an S-L series. Legendre’s equation . i

Lla-22] 4 e+ 9@ =0 (32)
is s"ee‘n to be an S-L equation where r(z) =1 — 22, p(z) = 1, g(z) = 0, and
AN=nn+1)
The set {(n + 5)/‘3Pn(x), n=012, )} forms an orthonormal set; i.e.,

/ P.()P,, (t) dat = (n + 28) Fomn
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Fourier-Bessel Expansion. The Bessel function J.(Az) satisfies the Bessel equation
2

2 x@)+(>\x—f—)y=0 (33)
dx dr z

For each n this is seen to be an S-I equation where » =z, p =z, and g = —n?/x.
Let N; (j =1, 2, . ..) be the roots of the equation J,(Aa) = 0 and let

Noj = [1 @501t = & (Tl

e = ]

The set of functions

forms an orthonormal set in the interval (0,a) with respect to the weight function z;
that is,

a
/;) loni O par(t) At = 8:;

A Bessel expansion or series for a function f(z) in the interval (0,a) is given by

0 w0

z CrjPnj = E a;J o (N7} (34)
i=1 j=1
a 1 a
where Cnj = ﬁ) ton i (OF(Q) dt and a; = v /0 t.(NOf (@) dt
ni

4 DIFFERENTIAL EQUATIONS
4.1 Introduction

A differential equation is an equation that involves a differential or a derivative.
The equation may contain algebraic and transcendental functions of a differential
or a derivative. It is assumed that a differential equation is not an identity.

1t is difficult to make a simple yet complete classification of differential equations

_because not only is the number of classes and subclasses needed immense but also any
particular differential equation is likely to appear in many classes. Nevertheless
certain broad classifications are commonly adhered to and have proved useful. The
primary division of differential equations results from the number of independent
variables that are present. An ordinary differential equation is an equation containing
one independent variable, one or more dependent variables, and at least one derivative
of a dependent variable with respect to the independent variable. By contrast, a
partial differential equation contains two or more independent variables, one or more
dependent variables, and at least one partial derivative of a dependent variable with
respect to an independent variable.

A differential equation is also categorized by giving its order and degree. The
order of an equation is the order of the highest derivative found in the equation. (The
word differential is omitted in front of equation if no confusion results.) The degree
of an equation is the power to which the highest derivative is raised. To this defini-
tion should be added the requirement that in stating the degree of an equation
it is implied that the equation is a polynomial in all the derivatives.

If the dependent variables and their derivative occur only to the first power or
degree, and not as products, an equation is called linear. For a linear equation, the
coefficients of the dependent variables and their derivatives are therefore functions
only of the independent variables. An equation that is not linear is called nonlinear.

By a solution of a differential equation is meant a set of functions of the independent
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variables, one function identified with each dependent variable, that when sub-
stituted in the equation results in an identity in the independent variables. It is
implied that the solution functions have at least as high derivatives as are needed in
the differential equation.

The general solution of an ordinary differential equation of nth order and one
dependent variable contains n, and only =, arbitrary constants. A particular solution
of an ordinary differential equation of nth order and one dependent variable is obtained
when the n arbitrary constants are given special values. Not all solutions of an
ordinary differential equation need to be particular cases of the general solution. A
solution that is not such a particular case is generally called a singular solution.

The general solution of a partial differential equation of nth order, m independent
variables, and one dependent variable is a solution containing n arbitrary functions
of m — 1 variables. The question of the existence and the uniqueness of the solu-
tions is not considered here, and the references should be consulted.

4.2 Ordinary Differential Equations

4.21 Differential Equations of the First Order. The general differential equation

of the first order has the form .
Fly'yz) =0

where the prime denotes differentiation with respect to . This is the implicit form
for the first-order equation. The equation

cp =y =fy2)

is the explicit form for the first-order equation. There exist a number of special
types of implicit and explicit equations whose solutions can be obtained by elementary
methods. The following list presents the more common types and their solutions.

Variables Separable:
- vdy _ [*
p=fanw [/~ [Ty e 39)

Homogeneous Equation:
- y) - log % = f v dv
p=f (x y =av %= Joa 7= 70 (36)

1. Now the equation P(z,y) dz + Q(z,y) dy = 0, where P(lz,ty) = t"P(z,y) and
Q(tz,ty) = tQ(z,y), has this homogeneous form.

2. Anequation p = f[(az + by + ¢)/(az + By + v)] may be brought into the above
homogeneous form, when af — ab # 0, by the linear transformation z = u + d,
y = v + e, where u and v are new variables and d and ¢ are constants. Ifag — ab =0,

' the equation can be put in the variables separable form by either substitution

( v=az +by +c¢
: or substitution v = az + By + ~v.
Linear Equation:
p +f@)y =g@) y=er=® (a - Lz ehg dx) b= fodx (87

Bernoulli’s Equation:

p + fx)y = glx)y" (38)

becomes the linear equation p + (1 — n)f(z)y = (1 — n)g(z) under the substitution
w o=yl
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Dependent or Independent Variable Missing:

1.p= f( y) and p = g(z) are equations of the variables separable type.
2.y =f(p);z — ¢ = [[f'(p)/p] dp.
3.2 =fp);y = c = fpf'(p) dp.

Clairaut Equation: »
y=ps+f@)  eithery =cz +f@) or  z+f(p)=0 (39
a singular solution. : ' ‘ o
Ezact Eqdation ‘

P(:r,y) dz + Qz,y) dy = Ois an exact equamon if oP = ‘Z—N : (40)
W

[ries [ (a2 [orm)a -

is the solution.
Integrating Factor:
A function H(z,y) is called an integrating factor or Euler multiplier if
HP(z,y) de + HQ(z,y) dy. = 0
is an exact equation. e
There exist certain other well-known first-order equations whose solution cannot be

obtained by Llementaly methods. The following types may be listed, and for further
mformatlon concerning them the references should be consulted.

Generalzzed chcalz FEquation:

d
2 = j@? + g@)y + h)
Special Riccati Equation:

Z—Z + ay? = bz

Abel’s Equation of the First Kind:

Abel’s Equations of the Second Kind:

fil@)y

M“

- @y + @y =
‘ -4=0
Binomial Equation:

d m ’
(&)" = s
4.22 Linear Differential Equations. The general linear differential equation of
the nth order has the form
n ,

s
Y sl T = 0t@) (41)

i=0 *

It is generally assumed that the coefficients fi(z) and g(z) either are continuous and
one-valued or are meromorphic functions of z throughout some region. Furthermore,
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it is usually assumed that fo(z) has at most isolated zeros in this region. If g(z) = 0,
Eq. (41) is called homogeneous. .
The expression

) n
iAd - ar dr—1 . d
L= 'ZO fod gz = fog + e b S
&

ig called the linear differential operator of order n. The following properties are com-
mon to all nth-order linear differential equations:

1. If y = y: is a solution of the Homogeneous equation L(y) = 0, then y = cy, is
also a solution of the equation, where ¢ is any arbitrary constant.

2. If y1, y2, . . . , Yp are p solutions of L(y) = 0, then
Y =cyrFcay: 4+ - ¢+ Yy
is also a solution of the equation, where ¢y, ¢s, . . . , ¢, are arbitrary constants.

3. If yo is any solution of L(y) = g and y, is any solution of L(y) =0, then
Y =19 +u
is a solution of L(y) = g.
4. The complete primitive of L(y) = 0 has the form

Y(@) =cyi +cya+ - - - + Can

where ¢1, ¢2, . . . , ¢» are n arbitrary constants and yi, ¥s, . . . , Yo are n linearly
independent functions that are solutions of L(y) = 0. The general solution of
L(y) = ¢g(z) has the form y = yo.+ Y, where yo is.a particular integral, that is, any
solution of L(y) = ¢g(z) containing no arbitrary constant, and where Y is the com-
plementary function or complete primitive of L{y) = 0.

Certain other concepts are useful in the discussion of lincar differential equations.
The determinant '

Y1 1/2 T Yn
' ! v e . '
Ay -y =V Y T T
1/1("_1) ?jz("_l) e yn(n—-l)
is known as the Wronskian of the functions y1,-ys, . © .., ¥s. The vanishing of the
Wronskian of y1, . . .., y» at any point-of the region being considered means that the

functions are linearly dependent. Conversely: if the Wronskian does not vanish, the

functions are linearly independent. A set of n linearly independent solutions of

the nth-order equation L(y) = 0 is called a fundamental set or fundamental system.
The adjoint equation to the equation

n
ds
L(y) = z f(n—i)gg;:% =0
=0

is the equation
n
L*0) = ) (= Hleetl _
- .odxt
i=0
The operator L* is called the formal adjoint operator to the operator L. If L = L*,
then the operator L and the:equation L(y) .= 0 are called self-adjoint. The relation

WL(y) — PL*6) = & [P(y)] 42)
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where P is a linear function of ¥ and v and their first n — 1 derivatives, can be verified
easily, and is known as the Lagrange identity.
The equation
n

Aly) = E w3~ 0 (43)

dzt
i=0

where the a._; are constants, is a homogeneous linear equation with constant coefficients.
This special linear equation not only is one of the most important and common in
applications but historically is the first equation of a general type to be completely
solved. The substitution y = e™® in this equation leads to the characteristic or
auxiliary equation

n

an_,-m" =0

=0
If this auxiliary equation has n distinct roots, 71, 72, . . . , 74, then the general solution
of A(y) = Ois
Y = Cieh® + € - - -t cue™?

where the cs are arbitrary constants. If m of the roots of the auxiliary equation are
equal to some value s, then the portion of the general solution corresponding to s is

(cr + cox + cax? + - - - + cmx™ et
The equation
n
. dy
nilP — = 44
20 anitt S2 = f(a) (a4)
i=

where the a,_; are constants, is known as Euler’s differential equation. The substitu-
tion z = ¢ transforms Buler’s equation into a linear equation with constant coeffi-
cients. This follows from the relation

;i‘ﬂ_ﬁ(i_ )...(1_- )
zdz"—dz dz ! dz 1)y

4.23 Linear Second-order Differential Equations. The second-order linear equa-
tion is a particularly important and common equation in physics and engineering.
The general equation of this type has the form

F@y" + g@)y’ + hx)y = r(z) (45)

The differential expression

) L{y) =fy" + gy’ + hy
has the adjoint expression

L*@) =f'" + @f —gv + " ~¢ +h
if f/ = g, then L(w) = L*(w) and L(w) is self-adjoint. Although L(y) is not self-

adjoint, the expression

%‘,eF“)L(y) where F(z) = -Lx % dz

is self-adjoint. Since any second-order linear homogeneous equation can therefore
be made self-adjoint by the multiplication of a suitable factor, there is no loss of
generality in considering only the self-adjoint case.

The normal form for the homogeneous equation L(y) = 0 is " 4+ Iu = 0, where
I(x) = (h/f) — Y4 (g/N? — Y5(g/f)’. The left-hand side of the normal equation is
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obtained by letting ¥ = u exp (— % ]; ? % dx) in the expression L(y). I(z) iscalled

the invariant function of the equation.

The method of variation of constants (or parameters) and the solution of equations
by the use of series are both applicable to nth-order linear differential equations. For
illustrative purposes these techniques are considered for the second-order case.

If the complete primitive ciyi(x) + caya(z), that is, the general solution of the
equation y” + gy’ + hy = 0, is known, then the solution of the equation

y' gy +hy=r

can be obtained by the method of variation of constants. Assume a solution of the
nonhomogeneous equation of the form y = c1(z)yi(x) + c2(x)y2(z), where ¢; and c»
are functions of x that are to be determined. If ¢'yy1 + ¢/ay2 is set equal to zero, then
y' = ¢yt + czy’s.  Furthermore, ¥ = ciy”’1 + ¢’z + ¢'19'1 + ¢'5y’s, and therefore
substitution in the nonhomogeneous equation gives ¢’yy'1 + ¢’2y’s = r. This last
equation and the equation ¢’yyy + ¢’sy2 = 0 can be solved for ¢’y and ¢’s. Direct
integration then gives

alz) =4 — /’L(t_)y%v(_‘Zﬁ_t c(z) = B + / —————-—T(t)y%ff) a

where W = yy's — 211 is the Wronskian function and 4 and B are constants. The
solution of ¥"" + gy’ + hy = r is given by .

=@ [ Wt - i) [ &+ au@ + Bu

The method of solving a differential equation by the use of power series consists

of assuming a solution of the form 2 anz"te, substituting it formally into the differ-

n=0
ential equation, collecting terms in like powers, and setting the resulting coeflicients of
each power equal to zero. The objective of this process is to determine the o and the
a.’s and thus a solution. An elementary illustration follows. Consider "' +y = 0,

and assume y = 2 anz™te, ay # 0. Direct substitution gives

n=0

z (n 4+ p)(n 4+ p — 1)anzrte? + z azrte =0
rn=0 n=0

o
The shifting of indices gives a,zte = Gn-2z""»~2, The collecting of like

2

7[\/13

n=0
terms results in

plp — Daozs™ + (p + Lpaszr™ + 2 [(n +p)(n + p — Dan + anslznte™? =0

n=2
The coefficients of the powers are zero when p(p — 1) = 0, (p + 1)pa; = 0,
(n+p)n+p—1a +a,2=0

(n > 2). The indicial equation p(p — 1) = 0 is satisfied if p = 0 or p = 1. TFirst
let p = 0. In this case (p 4 1)pa, = 0 is also satisfied for arbitrary a,, for example,
a1 = 0. The remaining equation becomes

P
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= On2 s = ... = (_l)u/z@
an—1 nn—1Dn —2)n —3) n!

an

for n even and a, = 0 for n odd. Consequently

w©

( 1) z?m
y—aoz @7"'—)"!—(1000512

m=

This solution is easily obtained or verified by using the properties of the cos z. If
p = 1, it is easy to obtain a series solution, which is ay sin z.

4.3 Partial Differential Equations

4.31 First-order Equations. - Let =1, 25, . . . , 2, be n independent variables, let
» = v(xy,Ts, . . . ,Z) be the dependent variables, and let
T R
P ;22 pe 0T P AZn

The general partial differential equation of the first order has the form
F(pi,pey « « + PutZy - - . ,Ta) =0 (46)

When n = 2, it is customary to put z, = z, 22 = ¥, p = 9v/dz, and ¢ = 3v/dy, so that
the equation has the form
F(P:(b”,x:y) =0 47)

First-order equations are called “linear” if the equation is of the first degree in the
partial derivatives.” Furthermore, they are called nonlinear if at least one partial
derivative is present to some degree other than one.

The linear equation for two independent variables has the form

P(z,y,v)p + Qz,y,0)g = Rz,yv) (48)

and is called Lagrange’s linear equation. The simultaneous ordinary differential
equations :

22 (49)

are called the subsidiary equations for Lagrange’s equation. If f(z,y,v) = ¢ and
g(z,y,v) = ca, where ¢; and ¢, are arbitrary constants, are two independent solutions
of the subsidiary equations, then any arbitrary functional relation ¢(f,g) = 0 satisfies
Lagrange’s equation. ¢(f,g) = 0 is called the general solution or integral of the
equation. For example, the equation ap + bg = 1 has the subsidiary equation
dz/a = dy/b = dv/1. The subsidiary equation has the two integrals

z—av=f=q¢ and y—bvsgécg

and the general integral is
oz —av,y —bv) =0

Subsidiary equations and the general integral are similarly obtained for the linear
equation with n independent variables.

Consider the nonlinear equation F(p,q,v,2,y) = 0. A complete integral of this equa-
tion is any solution that contains two arbitrary constants or parameters « and . The
complete integral may be denoted by f(z,y,4,2,8) =.0 and may be interpreted geo-
metrically as a two-parameter family of surfaces. A particular integral is obtained
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from a complete integral by assigning « and g particular or definite values. If aand 8
are eliminated from the three relations

f=0

then the eliminant o(z,y,0) = 0, if it satisfies the original equation, is called a singular
integral of the equation. A singular integral, if one exists, may also be found by
eliminating p and ¢ from the relations

F=0 <=0 = =0
P

Next let 8 = o(a) so that flzr,y,v,e,¢(a)] = 0 represents a one-parameter family of
surfaces. The totality of solutions of the equation F' = 0, which are derived from the

equations
o g

f[x)ylvya:‘f’(a)] =0 3

upon eliminating « for all possible choices of ¢, is known as the general integral. For
each choice of ¢ and « the equations f = 0 and df/da = O represent a space curve
called a characteristic curve. )

Charpit's method may be used for solving nonlinear equations of first order. This
method is based upon determining a second equation of the type G(p,q,v,2,3) = 0 that,
along with F' = 0, can be solved for p and ¢ in terms of z, y, and ».. The p and ¢ thus
obtained can be inserted in

pdx + qdy = dv

and an integrable expression for dv may result. It can be shown that any solution
w(p,q,v,%,y) = « containing p or ¢ or both, of the system

dp _ dg dv dz _ dy (50)

Fz+va~Fv+un=”pr—qu="Fp —F,

where F, signifies F /oz, can be used for G; that is, ¢ = w — a = 0. This method
can be generalized to problems involving more than two independent variables.
4.32 Second-order Equations. The general second-order equation has the form
F0zo0Vz129 - » « sVziziy « + o sVsnzmlsy » o« Van®Ty o - JZa) = 0 (51)
where v, signifies 0/(0z; éz;). Almost all second-order equations of interest are
in the class of quasilinear equations. The equation

n
Aiivz.z;‘ =B . (52)
5i=1
where the A;; and B are functions of the zi, . . .y @y ¥ ¥z <« + s Vums is called

quasilinear. Although most of the following concepts apply to quasilinear equations,
it is easier to consider the linear equation

n n
2 Aiivxixf + 2 Bivzi + cv + D=0 . (53)
1.7=1 i=1
where the Asj;, Bs;, C, and D are functions of zi, 2, . . . ) Zn.

In order to classify second-order linear equations it is customary to deal with the
coordinate transformations
s
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3

where the matrix @ = (a) is nonsingular with real elements. It is possible to find
such transformations so that the above linear equation takes the canonical form

n
Ai:i*vnzi + =0 (54)

1,7=1

where A;* = +1ifi =7 <m <nand 4;;* =0if{ £ jorifi =j > mat a given
point (z:% . . . ,za%).

With the use of this canonical form it is possible to classify a linear equation at a
given point (z:% . . . ,z.%) as follows: If at the point

1. All the A;;* > 0 and have the same sign, then the equation is called elliptic at
the point.

2. All the A;* 0 and if all but one 4:* have the same sign, the equation is called
hyperbolic at the poind.

3. All the A;* 5 0 and if there exist more than one positive A.* and more than one
negative A;;*, the equation is called ultrahyperbolic at the point.

4. Some A;* = 0, the equation is called parabolic in the broad sense at the point.

5. Only one Ai* = 0, the other 4:;* all have the same sign, and the coefficient of
8v/9z; corresponding to the zero A4;:* is not zero, then the equation is called parabolic
at the point.

A linear equation is called elliptic, hyperbolic, etc., in a region if it has that character
at every point in the region.

Next consider the equation

Ar + 2Bs + Ct + D(z,y,v,p,0) = 0 (55)

where r = 3%/0x2, s = 3%/(ds ot), and t = 3% /d¢? and where the coefficients 4, B, and
C are functions of = and y that are twice continuously differentiable. This equation
is called elliptic, parabolic, or hyperbolic according to whether the determinant

= AC — B? is greater than zero, equal to zero, or less than zero. The

BC
associated first-order ordinary differential equation

dy\* dy
A (-) ~oBY L0 =
dx dx + 0

has for solutions two one-parameter families of curves in the xy plane,
filzy) =« and  falzy) =8

In the hyperbolic case when A < 0, these two curves, called characteristics, are real.
In the elliptic case, A > 0, the characteristics are complex. Finally for the parabolic
case, A = 0, the curves coincide.

The characteristics can be used to obtain the following normal forms:

Hyperbolic:
vag = F(a,B,9,94,98)
or Vpg — Ung = F(f}"’;”)”{'yvn) a ={ + 7. B=¢—19
Elliptic:
vet + Van = F(;‘,?},U,Ur,v,’) o = { + 1;77 B=¢— 1:.,,
Parabolic:

Upy = F(I,T],U,V{,Uﬂ) a=f8=¢

n arbitrary function of z and y.
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Cauchy Problem. The Cauchy problem consists of finding a solution of the system

o™iy =a: (1 o*v;
at"i— bl ,xl,...,IN,?)],...,v,u,...,m,-..
@i=1,2 ..., Mk <njko+ki+ - +ki<ny
which satisfies the
okv;
'ak- = Hylzy, . . . ,Za) k=01, ... y Mi_1)

It should be noted that the number of equations is equal to the number of unknowns;

the independent variable ¢, time in physical problems, is singled out; if n; is the order

of the highest derivatives of u; that are present, then 9™ /at* must also be present;

and the functions H;; are all given in the same region in the (z1,z2, . . . ,%.) Space.
The simplest example of a Cauchy problem is that of finding a solution of

% = F(ty)  where v(ts) = %

For partial differential equations a simple example is given by the vibrating-string
equation
v _ %W

o gzt

where v(to,z) = Hi(z) is the initial displacement and where v, (ty,7) = Ha(z) is the
initial velocity.

The Cauchy-Kowalewski theorem states that if all the G; are analytic in a neighbor-
hood for all their arguments, and if the H; are analytic in the corresponding neighbor-
hood of the point (x1% . . . ,z.?), then the Cauchy problem has a unique analytic
solution in the neighborhood of (t%z,% . . . ,z.%. . :

4.33 Elliptic Equations. The simplest representative of the class of elliptic equa-
tions is Laplace’s equation in two dimensions and rectangular coordinates, namely,

W %

'a—;i 5?=0 or vx,+vuy=0
This equation often describes steady states, such as the steady temperatures in &
homogeneous body or the equilibrium form of a membrane stretched over a curve. A
function v is called harmonic or a potential function in a region D if it has continuous
derivatives of the first two orders and satisfies v, + vyy = 0 at every point of D.

Consider an elliptic partial differential equation L(v) = 0in a finite region D with a
boundary I'. The boundary-value problems for elliptic equations are classified as
follows: ’

Dirichlet's Problem, or the First Boundary-value Problem. Find a function v that
satisfies L(») = O in the region D and is equal to a prescribed continuous function f
on the boundary T. The term v equal to a function f on I' means that the limit
approached by v as the boundary T is approached by points interior to D is f.

Neumann's Problem, or the Second Boundary-value Problem. Find a function v that
satisfies L(») = 0in the region D and whose outward normal derivative dv/an at every
point on the boundary T' is equal to a prescribed function f.

Mized Problem, or the Third Boundary-value Problem. Find a function v that
satisfies L(v) = O in the region D and, if f is a prescribed function on the boundary T,
av + b(év/dn) = f on the boundary I'. If b = 0 or a = 0, then the mixed problem
reduces to Dirichlet’s problem or Neumann’s problem. :

A few of the important results associated with elliptic equations follow:

The Minimum-Mazimum Property. If v is a harmonic function in a bounded
region D and is continuous on the boundary T, then the values of v in D cannot exceed

¢ its maximum on T or be less than its minimum on T.
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Porvsson’s Integral. The solution of Dirichlet’s problem for the circle of radius R,
where
)2 .
v =20 Lo 1o
ort  r ar  r?aer

and v = f(6) when r = R, is given by

R — 72

1 27R
v = 5w ﬁ) A iy P G —a® (56)

Mean Value Property. If v is a harmonic function in the region D, then v has the
mean value property in D. The function v is said to have the mean value property in
D if at every point P in D »(P) equals the average of v either over the circurnference or
over the area of every circle contained in D with center at P.

Harnack’s Theorem. If wi(z,y) (k = 1,.2, . . .) are a sequence of functions har-
monic in a finite region D, and if this sequence converges uniformly in D, then the
limit function v(z,y) is harmonic in D.

Requirement for Newmann’s Problem. In order that there exist a solution of the
second boundary-value problem it is necessary that the integral of f over the boundary

T vanish; i.e.,
Jr G) s = fr s a0 =
v \5,) # = [ f©)ds =

4.3¢ Hyperbolic Equations. The equation of a vibrating string

is the simplest example of hyperbolic equations. The Cauchy problem for this equa-
tion with the initial conditions

v(0z) =f@@) and  0(0,2) = g(x)
has the solution, called d’Alembert’s formula,
z+t
voz) = 350 +0 + 5@ = 0] + 35 [ g ds (57)

A formal solution of the wave equation

i
[~

Uy = vz,—z;
=1
with the initial conditions
V0,21, . . . ,xa) = flTy, . . . ,%a) and (01, . . . ,xn) = glxy, . . . ,Zn)
is given by
» = 1 on? /t (2 N 0-9/2Q, (z,r) d
T —teet)o E TeanT) 4
e e S L G
= yiari o r rQs(x,r) dr
where
1
Qh(xyr) = V‘f o /h(am +617', P 24 +ﬂn7‘) an

- 2 /"'/‘p<xl+ah-..’Z"J’_a")dal"‘da
Varnt ) g (r? — p?)% "
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h 27n/2
e n = 7
wher Sn/2)
and p? = ay? 4 - + + + a,?is the mean value of the function % in the » + 1 dimen-

sional space. In three dimensions (n = 3) this formula is called Kirchhoff’s formula,
and in two dimensions the formula is often called the. Poisson formula.

Methods for solving hyperbolic equations are discussed in connection with bound-
ary-value problems.

4.35 Parabolic Equations. The simplest parabolic equation is the one-dimensional
heat-conduction or diffusion equation

This equation with the initial condition

v(0,z) = fx)

and the boundary conditions
| 26,0) = ¢1(t)  and (L) = ga(t)

is the first boundary-value problem for the heat equation.

4.4 Differential Equations of Mathematical Physics

‘ a2V | 2V |, 8tV
- VW =AV = —— 4 — + —
dx? + ay? + dz?

in Cartesian coordinates.

4.41 Laplace Equation:
Vip =0
1. Gravitational potential in a region free of mass
2. Steady temperature, i.e., temperature in a body that depends on position but
not on time
3. Velocity potential of the irrotational flow of an incompressible fluid

4. Magnetic potential
5. Electrostatic potential in a region free of charges

442 DPoisson Equation:
' V2‘p = —p(x,y,z)

1. Electrostatic potential in a region containing charges
2. Steady temperature with internal sources

4.43 Helmholtz Equation:
Vip + k¢ =0

k% may be a constant (or parameter) or a function of position.

4.44 Heat-conduction or Diffusion Equation:

1 6¢
Vi, = — 2%
T XKa
4,46 Wave Equation:
1 9%
Vip = — 2%
T G

4.46 Telegraph Equation:
9% de
2, = g2 +p 28 4
Vie a EYy Y Co
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4.47 Maxwell’'s Equations:

v-B =0 cudH =122 1 1y1 p=cE
c dt c

v-D =d4rp curlE = — 128 B = uH
¢ dt

where E is the electric field vector, H is the magnetic field vector, ¢ is the velocity of
light, J is current density, p is the density of the charge, u is permeability, and ¢is the

dielectric constant.

4.48 Equation for the Transverse Motion of a Plate or Bar:

9%
a?AA — =0
¢ + g

4.49 Equation of Continuity:
ap
Py, =0
o (pv}

where p is the density and v is the velocity vector.
4.410 Navier-Stokes Equation:
dv

YT =F-—v viy + Eyv.
5 P+ b v+3 v-v)

where p is the pressure, p is the coefficient of viscosity, and F is the external force.

4.5 Bouﬁdary-value Problems

Although the term boundary-value problem can be used in connection with ordinary
differential equations, difference equations, integral equations, and variational prob-
lems, the term generally denotes a partial differential equation and a set of auxiliary
conditions. Some authors separate such problems into initial~condition or boundary-
value problems according to whether the conditions are specified at some initial time
or all the conditions depend upon the space coordinates but not upon an initial state.

The following two comments should be noted when dealing with boundary-value
problems. First, the number of boundary conditions is usually equal to the sum
of the orders of the highest derivative with respect to each independent variable. For
example, in Problem 1 of Art. 4.51, the number of boundary conditions is four while
in Problem 2 the number of boundary conditions is three.

The second and most important comment is that, whenever possible, the problem
should be broken into simpler problems that can be dealt with separately. In par-
ticular, if nonhomogeneities occur in more than one of the equations, it is often
possible to consider a set of simpler problems each with one nonhomogeneity. For
example, consider the problem

Viz + Vi = Alzy)
with the boundary conditions

V{0,y) = fi(y) Vie,y) =fy) 0<y<bd
Vi(z,0) = fi(z) Viz,b) = fulz)

This problem can be broken into five simpler problems.
Let V =U, 4+ U, 4+ Us + Uy + W, where Uy, U, Us, and U, satisfy the equation

Uz: + Uyy = 0 and where W., + W,, = A. Furthermore,
W0,y) = W(a,y) = W(,0) = W(z,b) =0

Ui(0,y) = fily) Uia,y) = Uix,0) = Uilz,) =0
Usa,y) = f2(y) Ux0,y) = Usx(z,0) = Ua(z,b) =0
Us(z,0) = fi(z) Us(0y) = Usla,y) = Us(z,b) =0
U‘i(xlb) =f4($) U4<0:y) = U4(a7y) = UA(x:O) =0
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The two most common methods of solving boundary-value problems are the method
of separation of variables and the method of transforms, particularly the Laplace
transform. The techniques of conformal mapping, integral equations, and calculus
of variations can also be used for solving boundary-value problems. Two examples
of both the method of separation of variables nad the use of the Laplace transform
follow.

451 Separation of Variables. Problem 1. Solve the two-dimensional Laplace
equation

v | 9V _

oz? oy?

with the rectangular boundary conditions

V(0,y) =0 Viay) =0 0<y<b
V(z,0) = f(z) Viz,b) =0 0<z<a

Formal Solution. Let V(z,y) = X(z)Y(y), and substitute into the Laplace equa-
tion. This gives

or upon dividing by X7,
X /it _ &Y /dy?
X Y

Since the left-hand side of this equation is a function only of z and the right-hand side
is a function only of ¥, both sides must be independent of z and y and therefore equal
to some constant A. The term separation of variables is seen to be derived from having
separated all the functions in an equation that depend only upon a certain variable
from the other functions that depend upon the other variables. The constant A is
called the separation constant or parameter.

The use of the separation constant results in the two equations

d2X dary
—— =X d —— = —\Y
dx? an dy?
If A = —a?, the general solutions of these two equations can be written, when « # 0,

as
X = Asinaz + Bcos ax and Y = E sinh ay + F cosh ay

and when « = 0,88 X = Az + Band Y = By + F.
At this point it is necessary to apply the boundary conditions. First consider
V(0,5) = X(0)Y(y) = 0. This implies that B = 0 for all «. Next consider

Viay) = X(@Y(y) =0

In order that A # 0 and therefore X # 0, it follows that sin @a = 0 or & = nr/a,
where n is an integer. The conditions V(z,b) = X(x)Y(h) = 0imply that

Esinh b + Fcoshab =0
This will be satisfied if E = —D cosh ob and F = D sinh ab. Ience

Y = D sinh (b — y)
The quantity

Cr sin%x sinh %’r- ® -y

for any integer n, is seen to satisfy the Laplace equation and the boundary conditions
along the sidesz = 0, z = ¢, and y = b.
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In order to satisfy the remaining nonhomogeneous conditions V(z,0) = f(z), it is
usually necessary to consider the expréssion

al
Z C,,sinn-—"-rxsinhﬁ(b )]
a a
n=1

where the (. are constants. It was noted that each term and indeed the sum of

any finite number of terms of this series satisfy all the conditions, except perhaps
V(z,0) = f(z). The question now is if, when y = 0, Cx can be chosen so that

" ,
L mT, . N

C. sinh 2 b sin =~ z = f(z)

. a a

e

This is seen to be a Fourier series, and it is known that if C sinh (nx/a)b = ca are the
Fourier coefficients,

a
=2 / ) sin ™ a
a /O a
then indeed the series converges to f(z), where f(z) is nearly an arbitrary function.

The solution of the boundary-value problem is therefore given by

©

S T2 [ 0 sin " 2] sin ™  Si0B_ (am/@)® — 9)
V(z,y) B nz [a /;)v 7 sin a dt] sin a ’ sinh nrb/a

Problem.2. Solve the heat equation for one-dimensional flow

g 9
at dx?
with the boundary conditions
v(0,t) =0 v(mt) =0 t>0
v(z,0) = f(z) <z <m.

Formal Solution. Let v(z,t) = X(2)T(@), and substitute into the heat equation.
This gives .

ir . &°X &
el _p¢2 7 LA
X dz o T X

Therefore, since in this last equation the function on the left is a function only of ¢ and
the function on the right is a function only of z, the equations

X" =X and T’ = NeT
are obtained, where X is the separation constant. It is easily seen that the quantities
Cn.e™* gin (nx)

where n is an integer, satisfy these cquations and the homogeneous boundary condi-
tions. Again consider a series of such terms

a0
2 Cne~ ¥t gin (nz)
n=1
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When ¢ = 0, this reduces to the Fourier series

¢. sin (nx)

n=1

and to f(z), provided the ¢, are chosen as the Fourier coefficients,
2 e .
Cn ="~ / f(s) sin (ns) ds
T Jo

The solution of the problem is given by

vz,t) = i [?—r ﬂ;r f(s) sin (ns) ds] sin (ng) et

n=1

4.52 Laplace Transform. Problem 3. Solve the heat equation

oU _ U
at ar?
with the boundary conditions

U = F®) lim Uzt) =0 t>0

T %

U0 =0 0<z<lI

3-121

Formal Solution. Let u(x,s) = L{U(z,l)} = j;w e #U(z,t) d. The application of

the Laplace transform to the above problem resulis in the equations

’ du
B Nt
su(z,s) e

u(0,5) = f(s), -im wu(z,s) = 0, where f(s) is the transform of F(¢). The solution of
T @ :

this transformed problem is

u(x,s) = f(s) exp [ - (%s)%]

s %:l {x s ( x2 }
— = = Z -} o _
'?XP[ x(k) QTR ERT e\~ g

the use of the convolution gives

Since

=% [F s — (* =
Ulz,t) 2 (wk)=> /;) TRt —7) pr . dr
If F() = A, a constant, then
Ulz,t) = A erfe [?2- (kt)-/é]
Problem 4. Solve the vibrating-string equation
i = a?Y ey

with the boundary conditions

Y(z,0) = f(z) Y, (2,00 =0 0<z <1

Y(0,) =0 Y(,) =0 t>0
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The transformed problem becomes

sy(x,8) — sf(x) = oz
y(0,8) =0 y(l,s) =0
where y(z,s) = L[Y(z,f)]. The solution of this transformed problem can be obtained

either by the use of variation of parameters or by transforming with respect to z. In

341 My uwiS USC 01 varl

either case the solution becomes °
v(x,8)

T,8) = ———————
y(@s) a sinh s/a
where

. - z . . 1 .. (1 -2z
o(z,s) = sinh a - s / f(2) sinh Zdz + sinh 2 / f(z) sinh @ —2)s dz
a Y a a Jz a

In order to invert the transform and obtain Y (z,t), it is necessary to use an inversion
series. The terms in the inversion series correspond to zeros of sinh s/a, that is, the
poles of y(z,s). The sum of the two residues of esty(z,s) at s = s, where s, = inra
(n=1,2 ..),isgiven by

14ca sin (nwz) [exp (inwat) + exp (—inrat)}
where Cn =2 o f(2) sin (nxz) dz

The formal solution therefore becomes

Y(z,t) = E ¢ Sin (nrz) cos (nwat)
n=1

When ¢ = 0, this is seen to reduce to the Fourier series for f(z).
4.8 Numerical Soiution of Differential Equations

Since relatively few differential equations can be solved (or integrated) in finite
terms, it is generally necessary to consider numerical methods in order to obtain
approximate solutions. Even when the solution of a differential equation can be
obtained in infinite terms, the solution is usually difficult to evaluate and hence often
of limited practical value. The advent of high-speed digital computers has made it
relatively easy to obtain the numerical solution of difficult equations, such as multi-
group reactor equations. A large number of useful techniques for solving differential
equations may be found in the references. Some simple techniques follow.

4.61 Ordinary Differential Equation. Modified Euler Method. Although this
method as well as the following Runge-Kutta method can be used for a system of
equations, it is easier to consider a single first-order equation in order to indicate the
method of solution. Consider the differential equation

o+
£
[«
=]
-
<:
L]
o
)
&
_l._
>
8
N2
il
o
—~
Yy
e
Hl
=

Y1 = yo + Yo Az
where ¥’y is shorthand notation for f(z,y0). In like fashion
yn+lzyn+?/,nA$ n=1,2,.‘.

This, the oldest, simplest, and crudest technique, was devised by Euler. A modified
Euler method lets

4 1 "4
[

Yo +

YR
Y1

R
«

+ &

Yo
Yo

2

*\7
and 7N 2(y1 ) Az
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where (y1*)’ = f(zy,:*). Although this modified Euler method is slow and of
limited accuracy, it is very simple and easily used.

Runge-Kutta Method. Again consider y' = f(z,y) subject to y(z) = yo. This
method consists of computing in sequence k, ks, ks, ks and then the desired y;, where

ky = f(zo,y0) Az
ke =f(xo +%x, yo+g—‘) Az

k
k3=f(xo+§,yo+2—2)mc

k4 = f(:to + A:l:, Yo "F‘ kx) Az
1 = Yo + Y (ky + 2ks + 2k;5 + ko)

In order to obtain x4 (n =1, 2, . . ), it is necessary only to replace the z, and Yo
on the right-hand side of the above relations by the previously obtained z, and y..
This technique is one of the most commonly used and is of sufficient accuracy for most
applications.

4.62 Partial Differential Equations. Elliptic Equations. For illustrative pur-
poses consider the Laplace equation v, + vy, = 0 with Dirichlet conditions on a
square boundary; that iS, v(O,y) = fl(y)y v(a,y) = fZ(y)l 1)(3;:0) = f3(x); v(x,a) = f4(3?).
Let the square of side a be divided into a network or lattice of squares of side &, where
a is an integer multiple of . This can be accomplished by drawing two families of
lines parallel to the sides of the original square and spaced at integer multiples of A.
The intersections of these families of lines are called lattice points. The numerical
technique consists of solving a set of associated difference equations for a function that
takes on values only at the lattice points and using it as an approximation to the
function ¢ at the lattice points.

The differential equation v,. 4+ v,, = 0 can be associated with the difference
equation

@+ hy ~2@y) to@ —hy | v y+h — 2@y toy—h)
h2 + W =0

orv(z,y) = vz +h,y) +v(x — h,y) +o(z,y + k) + v(z,y — k). This associa-
tion results from approximating a first derivative dw/dz by [w(z + k, y) — w(z,y))/k
and a second derivative dw/dx? by [w(z + h, y) — 2w(z,y) + wlz — &, y)}/k2. The
last equation for v(z,y) indicates that the value at an interior lattice point is the arith-
metic mean of the values at the four nearest points. With the notation v(ih,jh) = Vis,
whered,§ = 0,1,2, . . ., N, and nk = a, the difference equation becomes

%i = Wi + Ve v Foi) =12 ... ,N -1
Whenever the subscripts 7 or j equal 0 or N, the corresponding v.; is set equal to the
appropriate boundary value; for example, vo; = f1(jh). The problem now consists of
solving a system of linear equations.

There are two general methods, relaxation and iteration, that can be used to obtain
an approximate solution to this linear system. The relaxation method deals with the
quantities

Bij = vignj + vicn + v + v — 4oy
In this method a set of ;% (4,5 = 1,2, .., N — 1) is chosen and the R;; are com-
puted. The R;; are called the residuals, and the object of the relaxation process is to
‘try to alter (or relax) the v;;9 so that the residuals all reduce, as nearly as possible, to
zero. Since the relaxation process is not systematic and may proceed in any fashion
in order to reduce the residuals, it is a hand method and not a machine method.

Iterative methods of solving linear equations are discussed in Art. 4.1 of Sec. 3-1.
The Gauss-Seidel method is a commonly used iterative technique. Consider the
formula

vOH = L™y b 0Dy b oy ey )
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where the superscript n denotes the nth iteration. Again a set v;;(® is chosen for the
interior points. New values v:;;( are obtained from the formula by starting at the
lower left-hand corner and proceeding to the right and then upward. v;®*D are
similarly obtained from the »;;®™. The process is continued until the v;;®*1) are
sufficiently close to the v;; ™.

More generally, when difference equations replace any elliptic equation and its
boundary conditions, a system of linear equations results. The numerical method in
such cases is called smplicit.

Parabolic Equations. The numerical solution of parabolic and hyperbolic equations
can be calculated with step-by-step processes. In contrast to implicit methods, these
step-by-step processes are called explicit methods.

Consider the heat equation U; = aU,. with the boundary conditions U(z,0) = f(z),
U0,8) = ¢:(t), UT,t) = g2(t). Let thestript > 0,0 <z < L be covered with a net
of equal rectangles with sides Az = h and At = k, where L is an integer multiple of k.
If U, is replaced by [U(z, t + k) — Ulz,0)]/k and Us, is replaced by [(U(z + 4, 2) —
2U(z,t) + Uz — h, £)]/h? the heat equation is expressed by

U, t + k) =rUlx +ht) + 0 =200 +rUlx — b 1)

where r = ka/h?. With this formula it is possible to calculate the values of U on the
¢ + k line if the values of U are known on the ¢ line. Now the values of U on the line
¢t = 0 are given by Ulz,0) = f(z), and therefore it is possible to calculate the values
Uz,k). It is, of course, not necessary to calculate the values U(0,k) and U(L,k) or,
indeed, any U(0,t) and U(L,t), since they are specified by the boundary conditions.
Having obtained Ul(z,k), the values U(z,2k) can be obtained, and so on, step by step
to Ulz,nk), where t = nk is the time interval to be covered.

One precaution must be followed in using this explicit method. The value of r must
satisfy 0 < r < 14; otherwise the numerical solution obtained may have little con-
nection with the actual solution. This fact, noted by Courant, Friedrichs, and Lewy,
states, roughly, that if the space mesh length k is fixed, the time mesh length k£ cannot
be too large. .

Huyperbolic Equations. Consider the wave equation Uy, = a?U., with the boundary
conditions U(z,0) = fi(z), U.z,0) = falz), U0 = g:(t), U(L,) = g2(t). Again
cover the strip ¢ > 0, 0 < z < L with rectangles having sides Ar = & and At =k,
where L is an integer multiple of H. Let the quantity U(z,t) be denoted by U;; when
z =dhandt = jk, wherei = 0,1,2, . . . ,Nandj =0,1,2, .. . . Tf the second
derivatives are replaced by second differences, the wave equation becomes

Uijr1r — 2Us; + Usjor _ a Ui — 20U + Uiy
k2 - he

or Uijy1 = rUisr; — 200 — DU + rUi1,; — Usjoy, where r = k?a2/h% The initial
conditions U(z,0) = fi(z) and U.(z,0) = falz) or, with forward differences,

Ulz,k) — U,0) = kfaz)

and therefore U(z,k) = kf:(z) + fi(z) supply the information needed in order to start
the step-by-step process.

Note that when ka = h, the equation reduces to Usijp1 = Uiyri + Uicni — Ui
It is easily verified that U = f(z — at) + g(z + at), where f(z) and g(z) are any two
functions of z with second derivatives, is a solution of both the wave equation and this
last difference equation. Therefore any solution of either the wave equation or the
difference equation is a solution of the other, since U = f(z — at) + g(z + at) is a
general solution. )

More generally it is necessary when dealing with hyperbolic equations to make sure
that the numerical process makes sense; for example, high-frequency component of a
wave motion will always be distorted. Here r = k2a?/h? must be restricted by
r < 11in order to ensure convergence of the numerical method.
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6 OTHER TOPICS

A discussion of vectors appears in Art. 1 of Sec. 3-1. The primary objective here is
to present some of the more common and useful formulas and results of vector analysis.

§.11 Scalar and Vector Products. The scalar (or inner or dot) product of two
vectors a and b is denoted by a* b or (a,b). The magnitude or length of a vector a
is denoted by |a]. The vector (or cross) product of two vectors is denoted by a X b.
Tt is customary to express,a vector in 3-space in terms of three unit vectors i, j, k along
the positive z, y, and z axes. - In Sec. 3-1 the unit vectors are denoted by e, es, and
es. eq denotes a unit vector in the positive « direction. The two vectors a and b,
therefore, can be written as a = aii + as2j -+ ask and b = bii + bsj + bsk; the follow-
ing elementary relations may be noted:

|a[2=a-a=a12+a22+b22

a+b =Db-a = abs + abs + ashbs = |aj{b] cos (a,b) (59)
a-b=0 means a=0 or b=0 or alisperpendiculartob (60)
iti=jrj=k-k=1 irj=j-k=k-i= (61)
axXb= —bx a = i(agbs hand aabz) -"r- j(aabl — bs(’ll) + 1'((’1‘41’)2 — blaz) (62)
iXi=jXj=kXk=0 63)
iXj=k jXk=i kXi=j
Triple Scalar Product. Volume of parallelepiped with edges a, b, and c:
' (117 as Qs
(abc) =a-(bXc)=(@Xb)rc=Db'(cXa)=|b b bs (64)
, . €1 C2 C3
Triple Vector Products:
aX(bXc)=>ba-c)—c(ab) (65)
@axXb-exd =(@-c)b-d) —(a-db-c) (66)

fa-(®Xdle—[a-(bXc)d=[arcXdb
~[b-(c X dla (67)

(a Xb) X (cxXd

The Differential Operator V. Rectangular Coordinates:
¢} a <]
V=del=i—+j—+k_—~
ox +1i oy + 8z
Vo —gradv =i 2 4% 4 ® (68)
- oz dy Jz

The gradient is a measure of the rate of change of the scalar field v at the point
(x,9,2).

e | Oy (O p o pi4 T+ Tk (69)

V-F=divF =
dx Iy dz
oF oF IF. aF aF or
v XF = ourl F = rot F =i (% - ) 4 5 (% _ ) +x (% - 7)o
- X our ro ! ay ‘8z i dz o + o ay (70)

%W k] %

2 = . = = —_— —_— |

V% = v+ (Vo) = del squared w Tap T o (71)
Differentiation Formulas:

Viww) = uVv + vVu (72)
ve@wF) =(v) -F+4ov-F (73)
v X @WF) = (Vo) XF 4w XF (74)
V-FXG)=G-(VXF) -F-(VXG) (75)
VF-G)=F VG + G- VF+F X (VXG +G6GX(VXF (76)
VXFXG =GVF~F-VG+FWV-G) -GV F) 77
. V- (VXF) =0 VX (V) =0 (78)
4 VX(VXF) =vV(©V-F) —VF (79)
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Cylindrical Coordinates:

z =rcos @ y =rsin @ z =z
ds? = dr? + r2d6? + dz? (80)
i 1 ov ov
dv = e, = -z = 81
grad v ear+earao+eaz (81)
divE =22 () +18% 2k (82)
104, aAo aA A,) [1 3 1 aA,]
IF = A2 L) — 2 83
our r 08 ar te r or (rdo) r a6 83)
19 1 % 621)
%) = I 4
v r ( ) 1"2 36t 632 (84)
Spherical Coordinates:
T =rcos ¢sin 8 y =rsin ¢ sin 8 z =rcos b
ds? = dr? + r? sin? 0 de? + r? d6? (85)
v 1 1 dv

dv = e — —— -~ = 86
grad v ear+e¢rsin03¢> e"raa 86)

. 19 1 9F 1

div F = = — (r*F,) -y — oF 8

v r2 dr F)+rsin0 a<p+r51n080(sm 0 87)

(r
1 ala] : [a i aF,]
1F =e, = - =t 21 A (Fg) —
cur e rsinﬁ[ (sin 0F,) » +e¢r p (rFg) =
1 1 84, o
[l 226y e

r Lsin @ d¢ ar

Lhd 1 v

19 .
V% = = — ( ) — (sm 6 — 89
r2 dr r2 sm2 [ 6<p r2sin® 6 36 a0 (89)

Integral Theorems. n is a unit outward normal vector to a surface 4, d4 is an
element of surface, and dV is an element of volume.

r=azi4+yj+ 2k

f/A(vxF)-ndA=fCF-dr 90)

The double integral is taken over the area bounded by the closed curve C.

Stokes’ Theorem:

Divergence or Gauss’ Theorem:

f/[VV-FdV=//AF-ndA ©1)

The triple integral is taken over the volume inside the closed surface 4.

Green’s Theorem:

//]V (Vo - Aw) dV = //Sv(Vw) ‘ndd — /[/Vvvzwdv ©2)
/ / fV WV — wv) av - f fs (09w — wVo) - n dA4 (93)

The triple integrals are taken over the volume inside the closed surface 4.
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5.2 Integral Transforms—Operational Mathematics

The inlegral iransform f(s) of a function F(t) is defined by the integral equation
. , »
1) = [ KGor dt = 1.(7) 94)

The function K (s,t), called the kernel of the transform, is taken to be a known function.
It is apparent from the definition that

of(s) = f  K(s,0)cl @) di = TalcP)
and

1O +16 = [ Y KDL + Fa@)] di = To(Fy + Fa) = To(Fa} + To{Fs)

These two relations indicate that the transformation between the functions #(¢) and
f(s) is linear. The defining transformation above is, then, a linear integral transform,
although it i§ customary to leave out the word linear.

The use of integral transforms is a particularly useful technigue for solving bound-
ary-value problems. In essence, this technique can be described as follows: First,
apply an integral transform to a differential equation and its boundary conditions.
This, in effect, reduces the number of independent variables by one and introduces a
parameter. The resulting, or transform, problem is then to be solved for the trans-
form of the dependent, or wanted, variable. It is then recessary to invert this solu-
tion, that is, pndo the result of the transform, in order to obtain the solution of the
given problem. An example of this process appears in the article concerned with
boundary-value problems.

Fach type of integral transform is particularly appropriate to the solution of certain
kinds of linear boundary-value problems. The Laplace transform has proved to be
especially useful for solving transient problems of the type arising in the conduction .
of heat in solids and in vibration theory. In contrast to the Laplace transform, where
the transformed variable is usually the time, the Fourier transforms are generally
taken with respect to a space variable over an infinite or semi-infinite interval. The
Hankel transform is applicable when the problem has symmetry about an axis and a
radial variable from 0 to « is present. The Mellin transform is similar to the Fourier
transform in its application.

It should be noted that the transform of the product of two arbitrary or unknown
functions cannot be obtained usefully in terms of the transforms of the individual
functions. Consequently, the integral transform method is successful only when the
coefficients involved in a boundary-value problem are either independent of or ele-
mentary functions of the transform variable.

6.21 Laplace Transform. The Laplace transform f(s) of a function F(t) is defined
by

50 = [[7 eur @) de = LiF) (95)
The Laplace transform of F(t) exists if F(t) is sectionally continuous in every finite
interval in ¢ > 0 and if it is of exponential order, that is, there exist constants C and

M such that
lim e eF(@)| < M
b o2

The inverse Laplace transform is denoted by L™1{f(s)}. This indicates that

L{F®)} =f(s) and  F() = L7H{f(s)}

The inverse transform is not always easily obtained. The use of tables of trans-
forms is the most convenient method of obtaining the inverse transform. The general
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Table 6. Laplace Transforms

No.

Lo N »

10

11

13

14

15

16

17

18

19

20

F@) = L f(s)}

f(8) = L{F(®)}

F'(t)
F(n)(t)

: .
oF'(=) de

¢
/0 fz‘ F(z) dz da:

/gl‘\(l — ) Fa(r) dr
= J1*Fy, convolution
nF(t)

1

-F(

p O]

eatf(t)

F(@it — b

where

F@t) =0ift <0

31; ®
)

n=1
ik

plan) gant
q'(an)

ongn-Yop ¥

1°8-5---(2n — 1
th—legat

cos at
sin af
sinh at
cosh at
t cos at
t sin at
t» sin at

()" cos 2 Vit
(=k) ¥ gin 2 VRt
Jo(2 \//v—t)

Jo(at)
Jylat) (Rev> —1)
t'J,(at) (Rew> — 14)

g (wt“)_l/é exp (—- ’i—:)
erfc (gz—l/‘)
(rt)‘y‘ exp (— I:—:)

sf(s) — F(0%)
snf(s) — snIF(0%) — gn2F/(0) — - - -

LY
8

— Fn-1)(Q*)

1

3_2 f(s)
Si(8)f2(s)

(= 1)nf(s)
[ : flz) d=

f(s —a)
e~bef(s)

Sles)

&, g(8) = (s —a)(s —az) - - -

q(s)
L'k + 1)

gh+t

(s — an)

k+1>0

8—(1.41/2) (n =1,2 - )

)
M .
Y (k> 0)

3

s2 4+ a?
a
s? + a?
a
82 — g2
8
8?2 + a2
81 — a
(s? + a?)?
2as
(s + a?)?
2rg nlsn
(82 4 an)n*!
; )
s~ 2/
s'%e‘k/'

l e k/s

3§

(s2 + ar)~7%

a”"[(s? + a,1)5'é — g]” (s2 + 42)"/“2
(0 4 35)(20) (st + av)~7-HE
"BV (k> 0)

LemkVieg 20

S

M= kVo g > 0)

[SEc. 3
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inversion procedures, however, involve inversion theorems and most often inversion
integrals or series. The references contain tables of transforms as well as more
information concerning the following transforms.

The 4nversion integral for a function f(s) is given by

+i
L f(s)} = Ejr—zﬁli’n: /:,7—1;5 etf(2) dz (96)

where the integration is along a line parallel to the imaginary axis in the complex 2
plane. The following theorem, essentially the same as the one found in Churchill’s
“Modern Operational Mathematics in Engineering,” relates the inversion integral
and inverse transform:

Inversion Theorem. If f(s) is an analytic function of s and is of order O(s™*) in some
half plane Re s > ¢, where k and ¢ are real constants and k¥ > 1, then the inversion
integral L;"1{f(s) } along any line Re z = v, where v > ¢, converges to a function F(t)
that is independent of v and whose Laplace transform is f(s); that is,

F(t) = Li'{f(s)}  and  L{F@®)} = f(s)

F(t) is continuous for each ¢ > 0, is of order O(e¥¥) for all ¢ > 0, and is such that
F(0) = 0.

It is often possible (see references) to express the inversion integral in terms of an
infinite series or an equivalent infinite integral.

5.22 Fourier Transforms. The Fourier transform f(y) of a function F(z) is
defined by

st) = @ [ e a )

The function f(y) is also called the spectral function for F(z). The Fourier integral
theorem formally states that

F(z) = 1 /w dy /w F(t)eiv== di (98)
2 J—= -

This leads to Fourier’s inversion formula

F@ = @0 [ fa)eedy (99)
Yor real F(x) the right-hand side of the Fourier integral theorem has the form
1 ﬂ) dy f Ft) cos 2yt — ) di (100)
- —=

If f(z) is sectionally continuous in every finite interval, and if f ® |f(z)| dz con-

verges, then at every point where f(z) has right- and left-hand derivatives
1 k-] «©
%[F(f) +FE) =1 ﬁ) dy/ F(t) cos 2ry(t — 7) dt (101)
T —®
If f(x) is an odd function, the Fourier sine transform

2\ % [= .
fly) = (—) L F(i) sin yt dt (102)
T
with the inversion formula

r@ = (3" [7 1w sin 2 ay (103)
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Table 7. Fourier Transforms
No \F@) = 0 [7 swesedy | 1) = @[ koo
; ey
1 | Flaz) af (a)
2 | k() 2 )
dy
3 iF(:a) —iyf(y)
dz
4 | eirali(z) Sy + a)
5 |F(z + z0) e~ivof(y)
6 |1 3(y)
7l (7 roce-nd | rwew
8 | @m-tt |z ¥ ly[-*
: \ ¢
9 sin ax (E) vl <a
* 0 lvl > a

(2:1)‘}"é sin (E + g)

(211)‘}‘2 cos (E — E)

10 |sin ax?

11 | cos ax?

12 giwz p<zx<g i(Z'n')‘% etr(wty) — giglwty)
0 z < p z>qgwherep <g y
~eztiws ;>0 . ,
13 |5 e i@m) P + y + i)
] 1
e Ny
15 |1zl 0<Res<1 (—-) |lyl=Ir(1 — 8) sin Ts
x 2
16 [€7*=? Res >0 (23)*%9_"2/" p
17 |e@=t e [@* + y0 ¥ 4 a)b(ar + 49
1 ' X e—alvl
18 z? + a? 2q 9
14
@ — )" 2l <ol (2)*s
1 M 3 o(ay)

20 (zz + a2) —}é

2\ %%
Qo
Pr(z) i
21 0

=] <1 RO
|l2] > 1

is obtained. If f(z) is an even function, the Fourier cosine transform

y) = (7_2r)'/‘z /;)w F(t) cos yt dt

with the inversion formula

F(z) = (?r)%/;w f(y) cos zy dy

(104)

(105)

is obtained.
5.23 Hankel Transforms.
is defined by

The Hankel transform f(y) of order v of a function F(x)

fl) = ﬁ)” 2J (@) F(z) do (106)
The inversion formula is given by
Fz) = A o (ey)f ) dy (107)
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6.24 Mellin Transform. The Mellin transform f(y) of a function F(z) is defined by

f) = /;” 2v3F (z) dx (108)
The inversion formula is given by
;4o
F@ = 2 [T e ay (109)
2mi Je—iw

65.26 Finite Fourier Transforms. The finite sine transform f,(n) and finite cosine
transform f.(n) of a function F(x) are defined, respectively, by

fuln) = /;)TF(x) sinnede n=12 ... (110)
and feln) = ‘/;)TF<1L‘) cos nx dz n=012 ... (111)

The inversion formulas for these transformations are given, respectively, by

L

F(x) = 2 z fs(n) sin nz 0<z < (112)
1rn=1
. 1 2 \
and F(z) = = f(0) + = 2 fem)cosnz 0 <z <w (113)
n=1

6.3 Linear Integral Equations

The following four types of linear integral equations are commonly noted:
Volterra equation of the first kind:

[ Koy & = 1) | (114)
Volterra equation of the second kind:
1@ — [* K@y ds = ) (115)
'Fredholm'equation of the first kind:
[ K@mue ds = 1@ (116)
Fredholm equation of the second kind:
v@ — [ K5yt ds = 1) (17)

The problem for these linear integral equations is to determine the unknown function
y(x) that satisfies the equation in the desired interval. It is assumed that the func-
tions K(z,s), f(z) and the limits a and b are known. K(z,s) is called the kernel of the
equation. These equations are called integral equations, since the unknown function
appears in the integrand. Similarly the equations are called linear, since the unknown
function y(z) occurs linearly.

Although some theory is related to nonlinear integral equations, most of the existing
theory deals with linear equations.
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v@ + [ K@) sin ly(s)) ds = f@)

is an example of a nonlinear equation, since the unknown function appears nonlinearly
through a sine function. Some theory has also been developed for systems of linear
integral equations and linear integral equations in more than one independent variable.
This article, however, deals only with linear integral equations in one independent
variable.

An integral equation is called singular if either one or both of the limits of integration
become infinite or if the kernel becomes infinite at one or more points of its domain.

L” emy(s) ds = f(z)
and IN \/x — ) s = 12)

are examples of singular equations.
There are two common methods of relating linear differential equations and Volterra
integral equations. Consider the linear differential equation

n
4@ + ) A = @)
i=1
If one lets z(z) = y™(z), then

y&=D(z) = /;z 2(s) ds + Gu_s YD (z) = ﬂ)x (& — 9)z(s) ds + tar® + Az

and finally
x (x —_— ) foimt
————T % d. ] ——— e
o D (8) s + a S 1)!-i— + ao

Direct substitution in the differential equation leads then to the integral equation

y(x) =

z(z)—{—ﬁ)x[Al—{—(x—s)Az-i- C +(:E;T__s)1—"T_!1A,.]z(s)ds=f(x)

The other method consists of repeated integration of the differential equation. It is
not difficult to verify using the formula

ﬁ)x /;)x! C j;)z“f(xn;x) dZnsr - - - day = { S) o fe)ds

that the differential equation will then become

z
v@ + [} K@) ds = f@) (118)
n—1
where K{z,s) = z ki(8)(z — )% the ki(s) being functions of A.(s).
=0 . i
Most developments of linear integral equations deal with Fredholm equations, since
a Volterra equation can be considered as a special case of a Fredholm equation with a

kernel K(z,s) which is defined for a £ s <z <bandiszerofora <z <s < b
Often either a parameter A appears s naturally or it is convenient to 0 introduce such a

parameter in the discussion of a integral equation. The equation
¥@) = [ Koy ds = f@) (119)

exhibits the customary location of a parameter.
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There are three general methods leading to the solution of Fredholm equations of the
second kind with a parameter. The first method is called the method of successive
substitutzon. - In this method the unknown function is obtained as a power series in
A with the coefficients being functions of the independent variable 2. This series is
usually called a Neumann series and converges for certain values of A. Method two
is due to Fredholm and will be called the Fredholm method. The unknown function in
this technique is obtained first as the ratio of two power series in A, The power series
in the numerator has coefficients that are functions of z, while the denominator power
series has coefficients that are independent of z. This method considers the integral
equation as the limit of a set of » linear algebraic equations in n unknowns when n
tends to infinity. The Hilbert-Schmidt theory provides the third method for obtaining
a solution. In this theory the unknown function is obtained in the form of a series of
fundamental or characteristic functions. These characteristic functions, or eigen-
functions, are solutions of the homogeneous integral equation and are associated with
particular values of the parameters called characteristic numbers or eigenvalues.

Before indicating some of the results obtained by these three methods, it is worth-
while to consider the special case where the kernel has the form

K(z,s) = E Ai(z)Bi(s)

) t=1
where A;(z) and Bi(y) are continuous and linearly independent. For a Fredholm
n

equation of the’first kind it is necessary that f(z) = 2 C;A:(z) in order that the
3=
equation have a solution. The general solution of this equation can then be written

in the form
n

¥@) = ) abi@) + k@
=1
where k(z) is any function orthogonal to all the B;(z); that is, /b h(s)B;(s) ds = 0.
a

For Fredholm equations of the second kind with the above type of kernel & solution

of the form
n

v@) = @) + ) adita)
i=1
is assumed. A necessary and sufficient condition that there exist a unique solution

and set of ¢; is that a certain determinant A is not equal to zero. This determinant A
is defined by

A = det [a,-,. - L Bi(s)A(s) ds]

where &;; is the Kronecker delta and 4, j =1, 2, . . ., n. This solution can be
written as

y = f@) + ] * Liz,0)f(s) ds

0 Ai(z) - - - Au(2)
B (s) :

where L(z,s) = Bn(9)
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If A = 0, solutions may also exist. This situation parallels the linear algebraic case

and corresponding results hold.
5.81 Successive Substitution. The method of successive substitution describes

in its name the process used to obtain a solution. Successive substitution for y(z)
gives

y(@) = f@) + X [ ® Kiz,5)y(s) ds = f@)
TN / ® Kiz9) [f<s> TN [ ® K(s,s09(s) dsl]

="*=f(x)+)\/Kf+)\2/K/Kf+-'~
+ an f 4 antt y
R e e e i
n n+1
where the integration is indicated symbolically. If, then,

lim »[K - - [Ky = lim \fK)"y =0
N> % TN n—r®
n

y(@) = f@) + i (/ K)'s
n=1

Theorem 1 gives the essential result for this method.

Theorem 1. If the kernel K(z,s) is real and continuous in its domain (¢ <z <'b,
a <s <b),if |[K&,s)| < M in this domain, if f(z) is continuous, and if the parameter
satisfies |A| < 1/[M (b — a)], then the equation

then formally

y(@) =\ [ P K@,9)y(s) ds = f(z)

has a unique continuous solution that is given by

y(@) = @) + i (x f K)"f (120)
n=1

The series involved in this solution converges absolutes and uniformly.
In the case of the Volterra equation

@ — [ * K@,9)y(s) ds = f()

the theorem holds without the restriction on the size of [A[.

5.32 Fredholm Method. The Fredholm method evolved from considering a
system of linear equation that replaces the integral equation. Divide the range of
integration into n equal parts of length &, and consider the unknown function and the
kernel at n corresponding values of the independent variable. The system of n»
equations in the n unknowns y(z:)

ylz:) — A 2 REK (24,8,)y(s5) = fl=:) i=1,2...,n
i=1
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corresponds to the integral equation
b
¥@ = [ Koy ds = 1@

The solution of these linear equations, providing A # 0, is given by

n
2 Agf(m)
N o i=t
(@) "
where A = det (8;; — MKy;), Kij = K(zi,s;), and Aqj is the first minor of the element
in the sth row and jth column. The determinant A can be expanded in the form

Kll e Kln

n n
=1 — g MR K Ki," . (—=xh)»
A=1 xhz Ko+ z K K|+ +

=1 1,3=1

Knl Knn
The limit as n tends to infinity leads formally to

1imAED(x)=1+z@E/"'/1<(zl xf)dx1~--dxi
Ty Iy
i ;

n— o J! S ——

F
K(’LhS;) N I((a:j,sl)
Ty Xj _
where K (s; s,») =
In a corresponding fashion

lim 29 = D(z,s\) = 2 “”"/ e /K(m e z")dxl e dm
h ! Tk
k=0

i ® k \_-\k,-—/ STy

K(z1,85) K(z;,8:)

The solution given above for y(z:) can be rewritten in the form
n
y oo g, Qi 2 B
y(z:) fi A + fi A
i=1
where the prime indicates that ¢  j. By starting with this solution, by taking the

limit as n tends to infinity, and by noting that z; can be any point of a <z < b,it is
possible to obtain the formal result

b
¥@ = 1@ + [ Lasni) ds
D(z,s,X)
D(N)
The two primary results of the Fredholm theory can be expressed in Theorems 2
and 3.

Theorem 2. If the kernel K(z,s) is continuous in its domain, if f(z) is continuous,
and if D(\) # 0, then the equation

y(@) — A Ab K(z,8)y(s) ds = f(z)

where L{z,s,\) =
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has the unique continuous solution

y(@) = f@) + f ® Liz,s () ds (121)

where, as obtained formally before,

D(z,5,N)
L(z,s,N) Y
The power series D(\) converges absolutely for all A, and the power series D(z,s,\)
converges uniformly with respect to z and s in its domain and converges absolutely
for all A

Theorem 3. There exists at most a denumerable number of values of A, called char-
acteristi¢ values or eigenvalues, for which D(A) = 0. In general no solution will exist
for the nonhomogeneous integral equation, that is, f(z) # 0, for Aosuch that D(\o) = 0.
On the other hand the homogeneous integral equation, that is, f(z) = 0, has no non-
trivial solution except for those Ao where D(X\o) = 0. These theorems and other
existing results or theorems are analogous to theorems for systems of linear algebraic
equation.

5.33 Hilbert-Schmidt Theory. The Hilbert-Schmidt theory is developed with
the same conditions on the kernel K(z,s) and the function f(z) that are used for the
Fredholm theory. In addition it is assumed the kernel is symmetric. A symmetric
kernel satisfies the condition

K(z,s) = K(s,x)

Before some of the results of Hilbert-Schmidt theory are indicated, the types of com-
mon kernel may be noted. A Hermitian kernel satisfies the condition

K(z,5) = —K(s,)
where the bar indicates the complex conjugate. A skew-Hermitian kernel satisfies

K(z,s) = —K(s,z)

A polar kernel has the form
p(s)K(z,s)

where K(z,s) is a symmetric kernel. Any equation that has a polar kernel may be
transformed into an equation with a symmetric kernel. A kernel K(z,s) is called
posttive definite if

b [b
/ [ FOEESf) dsdt > 0
a a
for any continuous bounded f(x). If the inequality is reversed, the kernel is called
negative definite. - If the equality is also permitted, the kernel is called semidefinite.

The following concepts appear in the results of Hilbert-Schmidt theory. A function
2(z) is normalized if

/bz(z);(T)dz = /bz(x)2dx =1

As usual the bar indicates the complex conjugate. Two functions z:(x) and 2:(x) are
said to be orthogonal if

b ——
[ zi(@)z2(x) dx = 0
a
A set of functions {z:(z)} is said to be orthonormal if

]sz(x)m dz = 8j
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where 8;; is the Kronecker delta. A set of functions 2:(z) defined on the interval
a < z < bis called complete if the only function of the type being considered that is
orthogonal to every z;(z) is the zero function. A value Ao such that the homogeneous
equation )

4@ = o /;bK(x,s)y(s) ds

has a nontrivial solution is called a characteristic value or eigenvalue. - A correspond-
ing function is called a characteristic function or eigenfunction.

Some of the more important results of Hilbert-Schmidt can be summarized as
follows. Given a real, symmetric, continuous, nonzero kernel, the following properties
hold:

1. There exists at least one eigenvalue \,.

2. All the eigenvalues are real, and the eigenfunction can be assumed real.

3. There exists a complete orthonormal set of eigenfunctions {y:(x)}.

4. A continuous function f(z) can be expressed in the form

: fle) = 2 s ()

T
where ;= /: F($)yi(s) ds

The series if infinite is uniformly cohvergent ong <z <b

5.4 Calculus of Variation

The methods of calculus of variation are generally separated into direct and indirect
methods. In the direct method a suitable approximate variational problem is formu-
lated in which a finite set of n constants or parameters is to be determined. It then
may be possible to let n tend to infinity in the solution of thé approximate problem
and thus lead to the solution of the original problem. In the indirect method a
related differential equation, often called the Euler equation, is usually obtained.
Some solution of the differential equation can then be shown to solve the variational
problem. Only some elementary results of the indirect method follow.

5.41 Euler Equations. The simplest general problem of the calculus of variation
consists of obtaining a function y = y(z) that gives a minimum (or maximum) value

to the integral
T2 d'[/ x?2 ,
I =[ f(x,y, —‘—) de = f Jlayy) do
- J dz 1

where the values zi, zs, ¥(2;), and y(zs) are given. The given function f is taken to be
twice continuously differentiable with respect to its arguments. Furthermore, the
sought function y(z) is assumed to be twice differentiable.

Let y(z) denote the minimizing function for the integral I, and let n(z) be a function
defined for z; < z < %, that possesses a continuous second derivative and is such. that
n(z)) = 0 = nz,) but is otherwise arbitrary. = Consider then the set of comparison
functions ¥ (z) defined by

Y@) = y() + erl®) = y(@) + 8y()

where eis a parameter. Since 3(z) vanishes at the end points z; and @3, Y(z1) = y(z1)
and Y(zs) = y(zs). The set of functions Y (z) have two important properties. First,
by proper choice of e and n(z) it is possible to represent any suitably differentiable
function satisfying the end conditions. Second, no matter what n(z) is chosen, y(z)
is a member of the set for ¢ = 0. The quantity 8y = en(x) is called the variation of
the function y(x).

Consider next the integral

(e = L TZ £(z,Y,Y") dz
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Since letting e = O is seen to be equivalent to replacing Y and dY/dX and y and
dy/dz, the integral I(¢) is a minimum with respect to e when e = 0. It follows that
a necessary condition for a minimum is given by

Now
oy = [T 9Y "_f"_li) =/“(if_ i)
l(e)'ﬂn (aY < tara) =l Gyt ) ®

and therefore
1o = [ (Lt L)z =0

- n
i ay'

The integration by parts of this last integral gives

vo - Zaln [ - G a = [n[w - g ]ee o

which is valid for any of the chosen n(z).
The basic or fundamental lemma of the calculus of variation states the following:

If the equation
f (@ H(z) dz =0 (122)
zr
with H(z) a continuous function, is valid for all functions »(z) that vanish at the end
point and are twice continuously differentiable, then H(z) = 0 identically in z; <

z < z2. Proof of this lemma may be found in the references.
The use of this lemma with the above equation I'(0) = 0 leads to the Euler (or

Euler-Lagrange) differential equation

of d (af) d

Y2 Z)=f, ——fy = 12
5~ % \oy fy o fr =0 (123)
or in detail, y'fyy + Y'fvy + fu= —f,=0

This is seen to be a second-order differential equation for the unknown function y(z).
The two constants of integration can be evaluated from the end-point conditions.

The condition I'(0) = 0, which leads to the Euler equation, is not a sufficient condi-
tion for a minimum of I(¢). This condition I'(0) = 0 indeed may imply a minimum,
a maximum, or a stationary value (or inflection point) for I(e).

The term extremum to the value of I(e) is applied to all three cases. The Euler
differential equation is a necessary condition for the existence of an extremum.
Every solution of the Euler equation is called an exéremal (or extremizing function).
The sufficient conditions for the minimum (or maximum) of I(e) are quite involved
and may be found in the references. Often the physical situation indicates the type
of extremum obtained. ’

The expression

T2 d T2
st = = [P - Esv wwas + a0 0]
21 dx 2
even if ey = 8y does not vanish at the end points, is called the variation (or first
vartation) of the integral I.

The problem discussed above may be generalized in a number of ways. Consider

first the integral

t2 . .
I = /; Fluzt, « < o sTndy .. . ) dE
1
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where the superior dot denotes differentiation with respect to the independent variable
{. Proceeding in a fashion similar to the above problem, the Buler equations become

o _d if—)E~7°,;,.—%f,;,4=0 t=1...,n

0x; dt \9z;
For the integral
L= / ey .,y de
Tt
the Fuler equation becomes
d d2 n dn —
fom e b e = (DR ) = 0

Finally consider the double integral

I = //’D flz,y,v,0.0,) dz dy

where D is the region of integration and v takes on prescribed values on the boundary
of D. The Euler differential equation becomes

a a
. — Jz —Jvy —Je = 0
é)zf + 6yf =
or in detail
Sogoales + 2f v p0y¥zy + foyoluy F foortz + Foyoly + fooz +f1/yy —fo=0

5.42 Lagrange's and Hamilton’s Equations. In classical dynamics, when a system
is conservative, a variational principle, called Hamilton’s principle, can be used to
determine the equations of motion. For a system with n degrees of freedom it is
possible to choose n independent quantities ¢, . . . , g that specify the configuration
of the system. The corresponding velocities are givenby ¢1, . . . , ¢» wheredg/dt = ¢.
The kinetic energy 7 is given by a quadratic function in the ¢s; that is,

n
T=13 2 @i;gg;
4,i=1
where the a¢;s may be functions of the gs. ¥or conservative systems the external
force is given by the gradient of a scalar potential function or energy V. The kinetic

potential or Lagrange function L is defined by L = T — V, the difference between the
kinetic and potential energy. Hamilton’s principle states that

8 /;”Ldt =0 (124)
1

The Euler equations that result from this principle are

d (aL) aL .
L) 2= = -1,2 ..., . a2
at \og./ ~ ag: 0 =1 n (125)

These equations are customarily called Lagrange’s equations of motion.

For a conservative system, the total energy E, which is equal to the sum of the kinetic
and potential energy, is a .constant throughout the motion of the system. When the
total energy is expressed in terms of the coordinates ¢ and the momenta p, it is called
. the Hamiltonian function H. 'The momentum p; for the ith coordinate is given by
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n

S
P EP i
j=1

The variational principle now gives

5 hLdt=6/h(T-— V) di = s/“(zT-H)

£ 3 i1

Without giving the details, the resulting Euler equations, called Hamilton’s canonical
equations, become
_0H
= o

_oH
aq.-

q,, and ].),; =

Auziliary Conditions. In many problems a function is sought that renders one
integral an extremum and that causes one or more other integrals to take on pre-
scribed values. Variational problems that involve such auxiliary integral conditions
are often called isoperimetric problems. Consider, for example, minimizing the integral

I

]

e )
[ @ aa
x1
subject to the integral
K

]

x» N
/; g(x,y,y’) dx

having a given prescribed value. If a function f* is defined by’
SRR

where the constant M is called an undetermined or Lagmnge multiplier, the Kuler
equation becomes

gt _ 4 "f*) -0
dy  dz \dy’

The three constants, the two integration constants, and A can be evaluated from the
end conditions and by giving K its prescribed value.
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